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General Introduction

The requirement of successful collaboration is complex, multimodal, subtle,
and learned over a lifetime.

Stahl et al., CSCL, (2013)

According to the New Learning Paradigm, students need to be taught the 4Cs super
skills that are most in demand in the 21st century (Kivunja, 2015). Collaboration
is one of these 4Cs super skills along with critical thinking, communication and
creativity. How do we define collaboration? Collaboration occurs when two or more
people work towards a common goal (Dillenbourg, 1999). Collaboration can take
place either in an online setting or in a co-located (or face-to-face) setting. The
measurement of online collaboration processes is possible due to the measurement,
collection and analysis of the learner data using learning analytics (Siemens, 2011;
Greller and Drachsler, 2012). Lately, with the ubiquitous use of sensors, a new
branch of learning analytics that is coined as multimodal learning analytics (MMLA)
has risen to popularity (Di Mitri et al., 2018a; Martinez-Maldonado et al., 2017a).
Furthermore, sensor technology has become more scalable (Reilly et al., 2018), more
affordable and more reliable in the past decade (Starr et al., 2018). With the help of
MMLA, focus has shifted to the analysis of co-located collaboration (CC).

“CC takes place in physical spaces where the group members share each other’s social
and epistemic space” (Praharaj, 2019, p. 1, emphasis added). The social space consist
of the non-verbal indicators of collaboration (such as non-verbal indicators from
audio like total speaking time, turn taking and non-verbal indicators from video
like gesture, posture and eye gaze) and the epistemic space consist of the verbal
indicators of collaboration (such as the content of the conversations obtained from
the audio) (Praharaj et al., 2018b). “The requirement of successful collaboration is
complex, multimodal, subtle, and learned over a lifetime. It involves discourse, gesture,
gaze, cognition, social skills, tacit practices, etc.” (Stahl et al., 2013, pp.1–2, emphasis
added). The indicators of collaboration help to detect the quality of collaboration.

But, how can quality of collaboration be described and detected by learning analytics
indicators? The indicators are the fundamental units for collaboration quality
detection obtained after processing and aggregating the sensors’ data. One or more
indicators can be combined to form the indexes which act as measurable markers
for collaboration quality. For example, during collaborative brainstorming (Tausch
et al., 2014), equality (i.e., the index) of the number of ideas (i.e., the indicator)
generated by the group members can denote the quality of collaboration. The
group with higher equality can be seen as having a better quality of collaboration
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General Introduction

because there are less dominating members in the group. Furthermore, depending
on the scenario and context of CC, the indicators of collaboration vary. For instance,
during collaborative programming, certain gestures like grabbing the mouse from the
partner and synchrony in body posture are relevant indicators of the collaboration
quality; whereas in collaborative brainstorming, the number of ideas generated by
each group member is an indicator of the quality of collaboration. This difference in
the set of indicators can be attributed to the CC task-based goals and the parameters.
The parameters of CC are primary characteristics such as team composition (e.g.,
initiators, role of being initiators or experts), behaviour during collaboration (e.g.,
reflection, misconception, coherence), behaviour of team members (e.g., dominance,
rapport, conflict) and types of interaction (e.g., passive or active).

Audio is the dominantly used modality in most of the past studies (Bassiou et al.,
2016; Lubold and Pon-Barry, 2014; Bachour et al., 2010; Luz, 2013) while detecting
the quality of CC. One possible reason could be the ease to capture audio data
from the microphones. Most of these studies put emphasis on the social space (i.e.,
non-verbal audio indicators of collaboration such as total speaking time (Bergstrom
and Karahalios, 2007; Bachour et al., 2010), frequency of turn taking (Kim et al.,
2015), pitch and rhythm (Lubold and Pon-Barry, 2014; Bassiou et al., 2016)). The
non-verbal audio indicators do not convey the true meaning of CC quality because
most are using black box machine learning methods and some studies report the
indicators (e.g., silence is an indicator for collaboration quality Luz (2013)) without
informing about the valence, i.e., how good or bad are these indicators? Very few
studies focus on the epistemic space (i.e., the verbal audio indicators or the content
of the conversations) while computing the CC quality. Therefore, the emphasis is
more on the “how” of the conversations instead of the “what” of the conversations.
The “what” of the conversations are more overt as compared to the “how” of the
conversations to detect CC quality. For example, higher or lower total speaking time
may be a good or bad indicator of collaboration quality while "yes" or "no" will most
of the time convey the same semantic meaning in an conversation.

Most of these studies focusing on the epistemic space use a manual approach to detect
the CC quality (Jeong and Chi, 2007; Teasley et al., 2008) in a controlled setting.
These approaches are laborious and time intensive. Very few use a semi-automatic
approach to understand the epistemic space (Huber et al., 2019; Chandrasegaran
et al., 2019). These studies are too abstract in either choosing representative keyword
clusters (as topics) or classifying dialogues into few selected categories which do not
affect the collaboration quality. They do not show the linkage of the conversations
between different group members to understand the richness of the conversations.

Therefore, to overcome these limitations, we design a technical set up, conduct
experiments with it in real-world authentic settings with the help of field trials.
These experiments are conducted in a university setting during a CC task of playing
a board game (to design a learning activity) with university staff members across 14
different sessions. The aim of designing this set up is to move towards automatic
collaboration analytics and measure the quality of collaboration. Here the group
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members had pre-assigned roles before starting the board game. We do a holistic
analysis of both the social and epistemic space with an emphasis on the inter-linkage
of the content of the conversations between different roles to understand the role-
role exchanges. This is visualized on a dashboard with the help of the network graph
which shows both “what” each role spoke with each other and “how” (i.e., total
speaking time and turn taking) they spoke with each other. To quantify the shared
understanding (to detect the CC quality) based on the knowledge convergence
measure (Jeong and Chi, 2007; Teasley et al., 2008), we also measure the shared
epistemic space between the roles with the help of a frequently used keyword analysis
and how it varies temporally.

So, the main objectives of the thesis are: (1) to define the constituents helping to
detect CC quality (i.e., indicators, indexes and parameters in this case); (2) to design
a set up for automatic CC analytics; (3) to move towards quantifying the quality
of collaboration by using the CC analytics set up and show the visualizations on a
dashboard.

Outline of the thesis
The thesis is structured into three parts that describe the theory to define and
understand CC quality and analytics, prototyping a set up using that theory and a field
study to detect and visualize collaboration analytics to move towards quantifying the
quality of CC. Part I (consisting of Chapter 1 and 2) gives a definition of CC quality,
analytics and helps to understand it. It describes the indicators of collaboration
quality, the high level indexes (composed of one or more of the indicators) which act
as the measurable markers of collaboration quality, contextualizing of the indicators
based on the scenarios of collaboration and the feedback mechanisms to support
collaboration. Part II (consisting of Chapter 3) describes the prototyping of an
automatic CC analytics set up using the CC quality definition. Here, we develop an
architecture for data collection, processing, analysis, visualizations and then test it
based on a field study of a specific CC task. We primarily focus on the audio-based
indicators of CC. In Part III (consisting of Chapter 4) we use the set up built in the
second part to visualize CC analytics based on the content of the conversations (or
audio-based indicators of collaboration) with an aim to move towards CC quality
detection. The content is obtained from the audio recordings during a CC task across
14 different sessions in an university setting.

In Chapter 1 we do an exploratory scanning of the CC landscape to understand
the state-of-the-art studies on the indicators to detect the quality of collaboration.
Then we look into the studies on feedback during CC which take the help of these
indicators to facilitate collaboration. For example, during collaborative meeting,
total speaking time was used as an indicator of collaboration quality to give real-
time feedback to facilitate collaboration. The real-time feedback was shown as a
reflection of the total speaking time by glowing the required number of LED lights
(i.e., proportional to the total speaking time) in front of that group member on a
smart table. This helped to reduce the participation (i.e., total speaking time in
this case) of the over participators and increased the participation of the under
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General Introduction

participators; thereby improving the quality of collaboration.

So, based on these indicator, feedback examples from several studies, we designed a
quick hybrid set up (with the combination of humans and sensors) to test real-time
feedback with the help of a small field study. Here, we used group PhD meetings
to track audio-based indicators (such as total speaking time and turn taking) using
microphones and human observers. Using these indicators, we designed a real-time
feedback on a public shared display to show as a reflection to the group members.
The aim of this feedback set up was to get a feel of it instead of testing the efficacy
of the feedback on collaboration quality.

After the exploration, we do an in-depth literature review of the indicators of
collaboration quality in Chapter 2. It is because the indicators of collaboration vary
depending on the scenarios and the context of collaboration. Thus, a diverse set of
indicators of collaboration can help in the detection of quality of CC depending on
different scenarios. The quality of CC can be measured by a event-process framework
made up of the indicators and indexes. The indicators are low-level events obtained
after processing and aggregation from the sensors. The indexes (i.e., high level
processes) which act as the measurable markers help in detecting the quality of
collaboration are made up of one or more indicators. For instance, in collaborative
meetings (i.e., the scenario of CC), the equality (i.e., the index) of the total speaking
time (i.e., the indicator) measures the quality of collaboration. If all group members
have similar total speaking time with no one dominating the conversation then
there is higher equality of total speaking time for the group and better quality of
collaboration.

These indicators also vary across different scenarios because of the differing goals
and parameters (i.e., primary aspects such as team composition, behaviour of team
members and behaviour during collaboration) of CC. For example, indicators of
CC quality for collaborative programming can differ completely from indicators of
collaborative brainstorming. Therefore, with the help of this literature review, we
define a conceptual model that encompasses the indicators, indexes and parameters
to detect the CC quality. In this model, we map the parameters in different scenarios
onto the indicators and indexes to support the design of a CC quality detection and
prediction system.

Using this model, we zoomed in on audio-based indicators of collaboration in
Chapter 3. Audio is the dominantly used modality as found in the literature review
and it is also easy to capture with microphones. We found that most of the prior
works focused on the “how” of the conversations and not on the “what” of the
conversations while detecting CC quality. Thus, the focus was on the social space
(comprising of non-verbal audio indicators such as total speaking time, change in
pitch) and not that much on the epistemic space (comprising of the content of the
conversations) of the audio modality. A handful of works focused on the epistemic
space semi-automatically in lab setting and some coded the epistemic space manually.
These approaches were based on predefined conditions, gave abstract overview of
the topics of discussion and laborious to implement. So, we build a prototype to
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overcome this and analyze the richness of the epistemic space in an authentic real
world setting with the help of field trials.

For this, we record the audio conversations during a CC task where university staff
play a board game with pre-assigned roles to create awareness of the connection
between learning analytics and learning design. We transcribe these audio recordings
(i.e., convert from speech to text), process them and then visualize them (using
network graphs to understand the interconnected nature of the spoken text) by
doing a role-based profiling to get a holistic overview of the conversations in an
automatic manner. We test this prototype for one CC session and also discuss the
limitations in automation of the prototype. The purpose of building this prototype is
to make a step towards automatic collaboration analytics.

Using the developed prototype, we move towards quantifying the quality of collab-
oration in Chapter 4 with the help of field trials across 14 different CC sessions
played in the context of the board game discussed earlier. We do a holistic analysis
of the social (i.e., total speaking time and turn taking) and epistemic (i.e., the
content of the conversations) space also considering the role based contributions
and interactions and then visualize it. We define quality taking into account the
convergence of the discussion (i.e., shared epistemic space as analyzed from the
content of the conversations) among the group members with different roles. Finally,
we visualize both the social and epistemic space using a dashboard; then discuss the
stakeholders who can use such a dashboard and what future research can be done
on that dashboard.

The thesis is concluded by a General Discussion where we summarize the find-
ings of the studies included in the thesis and give recommendations for the com-
munity. Apart from that, the limitations are reviewed and practical implications,
final thoughts are discussed.
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Part I

Collaboration Indicators, Analytics
and Feedback





Chapter 1

Multimodal Analytics for Real-time
Feedback in Co-located Collaboration

Collaboration is an important 21st-century skill; it can take place in a remote or
co-located setting. Co-located collaboration (CC) is a very complex process which
involves subtle human interactions that can be described with multimodal indicators
(MI) like gaze, speech and social skills. In this chapter, we first give an overview
of related work that has identified indicators during CC. Then, we look into the
state-of-the-art studies on feedback during CC which also make use of MI. Finally, we
describe a Wizard of Oz (WOz) study where we design a privacy-preserving research
prototype with the aim to facilitate real-time collaboration in-the-wild during three
co-located group PhD meetings (of 3-7 members). Here, human observers stationed
in another room act as a substitute for sensors to track different speech-based cues
(like speaking time and turn taking); this drives a real-time visualization dashboard
on a public shared display. The main purpose of this WOz study is to run a small
field study to test real-time feedback during CC using a small set of MI.

This chapter is based on:

Praharaj, S., Scheffel, M., Drachsler, H., and Specht, M. (2018). Multimodal ana-
lytics for real-time feedback in co-located collaboration. In European Conference on
Technology Enhanced Learning (pp. 187–201). Springer, Cham, doi: 10.1007/978-3-
319-98572-5_15.
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Multimodal Analytics for Real-time Feedback in Co-located Collaboration

1.1 Introduction
Collaboration is an important skill in the 21st century (Dede, 2010). It can take
place in different settings and for different purposes: collaborative meetings (Terken
and Sturm, 2010; Kim et al., 2008; Stiefelhagen and Zhu, 2002), collaborative
problem solving (Spikol et al., 2017b), collaborative project work (Cukurova et al.,
2017a, 2018), collaborative programming (Grover et al., 2016) and collaborative
brainstorming (Tausch et al., 2014). Some are in co-located and some in remote
settings. “The requirement of successful collaboration is complex, multimodal, subtle,
and learned over a lifetime. It involves discourse, gesture, gaze, cognition, social skills,
tacit practices, etc.” [emphasis added] (Stahl et al., 2013). Moreover, in each context,
the indicators of collaboration vary. For instance, in collaborative programming
pointing to the screen, grabbing the mouse from the partner and synchrony in
body posture are relevant indicators for good collaboration (Grover et al., 2016);
whereas in collaborative meetings gaze direction, body posture, speaking time of
group members are more relevant indicators for good collaboration quality (Terken
and Sturm, 2010; Kim et al., 2008; Stiefelhagen and Zhu, 2002). Thus, it is essential
to understand what the different types of collaboration and their purpose are and
what are the relevant indicators. These indicators help to formulate the intervention
or feedback mechanism to facilitate collaboration (Bachour et al., 2010; Schneider
et al., 2015; Bergstrom and Karahalios, 2007). Moreover, engaging in a collaborative
task does not essentially build collaborative skills (Dillenbourg, 1999); rather on-
time feedback encourages self-reflection (O’Donnell, 2006). The type of feedback is
also dependent on the goal of the task which can be to evaluate collaboration as a
process (Bachour et al., 2010) or collaboration as an outcome (indicated by learning
gain) (Schneider et al., 2015) or both (Schneider et al., 2015). To understand this
in-depth, we have formulated two research questions:

RQ 1: What collaboration indicators can be observed and are relevant for the quality
of collaboration during CC?

RQ 2: What are the state-of-the-art feedback mechanisms that are used during CC?

There has been a dearth of studies on automated multimodal analysis in non-
computer supported environments (Worsley and Blikstein, 2015). Considering the
time and effort required to build a sensor-based automated system which can also
give real-time feedback, we chose to create a WOz research prototype which can
integrate human observers and existing sensor technology. This enables us to study
different CC settings with a variety of multi-source multimodal indicators coming
from automated sensors as well as human observers.

The remainder of the paper is structured as follows: in the related work (sec. 1.2)
section we answer RQ 1 and RQ 2; it is followed by an explanation of our prototype
design based on the WOz study (sec. 1.3); this is followed by a discussion (sec. 1.4)
of the answers to our research questions; finally, a conclusion (sec. 1.5) is drawn
and we throw some light on future work and open questions to be answered.
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1.2 Related Work
In this section, we will first analyze related work according to the different indicators
used during CC from multiple modalities; and secondly review the different feedback
mechanisms used during CC.

1.2.1 Multimodal indicators during co-located collaboration
Different categories of verbal and non-verbal indicators have been used in the liter-
ature to measure collaboration quality ranging from tangible interaction, different
speech-based cues, to gaze and eye interaction. Schneider and Blikstein (2015) used
Tangible User Interface (TUI) for pairs of students to predict learning gains by ana-
lyzing data from multimodal learning environments. They tracked the gesture and
posture using a Kinect Sensor1 (Version 1) which can track the posture and gesture
of a maximum of four students at a time based on their skeletal movements. They
found that the hand movements and posture movements (coded as active, semi-active
and passive) are correlated with learning gains. The more active a student is, the
higher is the learning gain. Even the number of transitions between these three
phases was a strong predictor of learning. Students who used both hands showed
higher learning gains. Some of the activities that were logged by the TUI, like the
frequency of opening the information box in the TUI can be correlated with learning
gain. All these features were fed into a supervised machine learning framework
to predict learning gain. Similarly, Martinez-Maldonado et al. (2015a) used TUI
indicators for group work based on the log data generated and the gesture and
posture of group members around the TUI.

Other works detected non-verbal cues during collaboration without a TUI. Stiefel-
hagen and Zhu (2002) tried to detect the impact of head orientation on the gaze
direction in a group round table meeting with four members. They found that on an
average 68.9 % of the time head orientation can estimate gaze direction. Moreover,
attention focus of group members can be easily predicted 88.7 % of the time using
head orientation as the only input. Similarly, Cukurova et al. (2017a) performed a
experiment on 18 members in six groups of three members each to detect non-verbal
cues of collaboration using human observation. Hand position (HP) and head direc-
tion (HD) was a good predictor of competencies in Collaborative Problem Solving
(CPS). They extended this work and formed the NISPI framework (Cukurova et al.,
2018) using HP and HD as non-verbal indicators. These indicators were obtained
during a prototype design by students (11-20 years old) using the Arduino toolkit.
Then, they were coded for each student as: 2 (active) if a student is interacting
with the object for problem solving, 1 (semi-active) if the head of the student is
directed towards an active peer and 0 (passive) for all other situations. Using this
coding, different collaboration dimensions like synchrony, individual accountability
(IA), equality and intra-individual variability (IIV) were formed. High competencies
of CPS was detected if high levels of synchrony, IA and equality is detected in the
groups.

1An integrated sensor tracking simultaneously infrared, depth, audio and video.
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Speech-based cues are an integral part of any collaborative task. Lubold and Pon-
Barry (2014) found that proximity, convergence and synchrony are different types of
coordination cues obtained from the speech features (like intensity, pitch and jitter)
of the pair of students collaborating. It helped them to detect rapport between group
members. It was observed from correlation analysis that proximity, convergence and
synchrony measured using pitch can be a good predictor of rapport between the
group members during collaboration. Students also self-reported rapport which was
compared and collaboration levels were determined. Bassiou et al. (2016) assessed
collaboration among students solving math problems automatically. They used non-
lexical speech features; thereby, preserving the privacy. They used a combination of
manual annotation and Support Vector Machine (SVM) to predict the collaboration
quality of the group. Types of collaboration marked are: Good (all 3 members
are working together and contributing to the discussion), Cold (only two members
are working together), Follow (one leader is not integrating the whole group) and
Not (everyone is working independently). This coding was based on two types
of engagement: simple (talking and paying attention) and intellectual (actively
engaged in the conversation). They found that the combination of the speech-
activity features (i.e., solo duration, overlap duration of two persons, overlap duration
of all three persons) and speaker-based features (i.e., spectral, temporal, prosodic and
tonal features of speech) are good predictors of collaboration. Simple indicators
like the speaking time of each member can also be a good indicator of collaboration
(Bachour et al., 2010; Bergstrom and Karahalios, 2007). Even a mixture of verbal
and non-verbal indicators along-with physiological signals like skin temperature
(Pijeira-Díaz et al., 2018) can be a good collaboration indicator (Madan et al., 2004;
Kulyk et al., 2005).

Besides, eye gaze can be an indicator of collaboration quality. Some researchers
(Richardson and Dale, 2005; Jermann et al., 2011; Schneider and Pea, 2013) while
using eye gaze analysis found that (JVA) Joint Visual Attention (i.e., the proportion
of times gazes of individuals are aligned by focusing on the same area in the shared
object or screen) is a good predictor of the quality of collaboration of a group which
is reflected by the group’s performance. Moreover, Schneider and Pea (2013) showed
that JVA can be used as a reflection mechanism in remote settings to show each
student their partner’s gaze patterns in real-time to improve collaboration. Schneider
et al. (2015) got the same results by replicating the experiment in a co-located
setting. The work by Schneider and Pea (2014b) used JVA, network analysis and
machine learning to determine different dimensions of a good collaboration like
mutual understanding, dialogue management, division of task, signs of coordination as
outlined by Meier et al. (2007).

Moving on to the different purposes in which collaboration has been studied, Spikol
et al. (2017b, 2018a) studied collaborative learning specifically in the context of
Collaborative Problem Solving (CPS). They tracked the distance between hand
movements and faces of group members. Later the recorded video streams were
coded by experts with 0 (for passive), 1 (for semi-active) and 2 (for active) based on
different combinations of head and hand positions for training the machine learning
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classifier for predicting the quality of collaboration. Recent work by Chikersal et al.
(2017) dives deep into the deep structure of collaboration in dyads. They found
that synchrony in facial expressions correlated with collective intelligence of the
group but not significantly correlated with the synchrony of electrodermal activity of
members. Another work by Grover et al. (2016) studied CPS in a pair programming
context based on a pilot study. They captured data from different modalities (i.e.,
video, audio, clickstream and screen capture) unobtrusively using Kinect. For initial
training of the classifiers using machine learning, experts coded the video recordings
with three annotations (i.e., High, Medium and Low) when they found evidences
of collaboration between the dyads. These evidences include pointing to the screen,
grabbing the mouse from the partner and synchrony in body position. Later this
classifier could predict the level of collaboration.

Moreover, post-hoc coding with the help of human coders has been a effective method
followed for a long time to detect different indicators of collaboration. Davidsen
and Ryberg (2017) videotaped the work of pairs making a collaborative discussion
around a touch screen measuring “The size of one meter”. The pair was trying to
translate the design from graph paper to the touch screen to measure one meter.
They found that body movements, language and gestures can be helpful to discover
different facets of collaboration. Similarly, Scherr and Hammer (2009) observed
videotaped groups and identified four clusters based on the collaborative behaviour
from both verbal and non-verbal indicators (like eye contact with peers, straight
posture, clear and loud voice, etc.). Besides, some works (Shih et al., 2009; Tausch
et al., 2014) considered epistemological aspects of collaboration during brainstorming
where the number of ideas generated by each member was the indicator of quality of
collaboration. Detecting individual attention levels in classroom from the responses
to questions (i.e. epistemological) is also common (Triglianos et al., 2017).

In summary, collaboration indicators can vary from non-verbal, verbal, physiological
to log files obtained from shared objects like TUI or computers. It depends on the
context. Table 1.1 shows the overview of the multimodal indicators detected. We can
find two types of co-located collaboration indicators, i.e., social (verbal, non-verbal
and physiological) and epistemological (logs, ideas).

1.2.2 Feedback during co-located collaboration
Using these multimodal indicators, different feedback mechanisms have been de-
veloped in the past to facilitate CC. Kulyk et al. (2005) designed a mechanism to give
real-time feedback to participants in group meetings (with 4 members) by analyzing
their speaking time and gaze behaviour. The feedback was in the form of different
coloured circles representing attention from other speakers measured by eye gaze,
speaking time and attention from listeners. This feedback was projected on the
table in-front of where each participant was sitting using a top-down projector. They
performed both quantitative and qualitative evaluation to evaluate the effect of the
feedback: the feedback was accepted as a positive measure by most group members;
use of feedback had a positive impact on the behaviour of group members as they
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Table 1.1 Overview of studies on co-located collaboration.

References Indicators Goal

Schneider and
Blikstein (2015)

Hand movements, pos-
ture & TUI logs

Post-hoc analysis of indicators
on learning

Schneider et al.
(2015)

Joint Visual Attention
(JVA)

JVA indicates learning

Spikol et al.
(2017b)

Distance between hands
& faces

Extraction of multimodal fea-
tures during collaboration

Grover et al. (2016) Pointing, body position
& grabbing mouse

Post-hoc classification of col-
laboration

Bachour et al.
(2010)

Total speaking time LED display to regulate audio
participation in real-time

Tausch et al. (2014) Number of ideas Real-time metaphorical feed-
back to support CB

Bergstrom and
Karahalios (2007)

Total speaking time Conversation clock will regu-
late the equity of conversation
in real-time

Cukurova et al.
(2018)

Hand position and head
direction

Build a non-verbal indicator
framework for collaboration

Lubold and Pon-
Barry (2014)

Intensity & pitch of
sound, self reports

Detect collaboration levels
based on rapport obtained
from audio cues & self-reports

Bassiou et al.
(2016)

Speech overlap dura-
tion, no overlap dura-
tion, spectral, temporal,
prosodic & tonal speech
features

Predict collaboration quality
from audio cues

Davidsen and Ry-
berg (2017)

Dialogue, gesture, pos-
ture & gaze

Detect indicators of collabor-
ation from videotaped record-
ings of collaboration tasks

Scherr and Hammer
(2009)

Eye contact, posture &
amplitude of voice

Detect indicators of collabor-
ation from videotaped record-
ings of collaboration tasks

had a balanced participation and improved eye gaze. Terken and Sturm (2010) used
a similar setting and feedback mechanism; they discovered that the feedback on
speech increased the equity of participation in the group. But, surprisingly feedback
on gaze behaviour had little effect on the interaction pattern of group members.
Similarly, Madan et al. (2004) used sensors to capture nodding, speech features and
galvanic skin response of dyads and built a real-time group interest index. This group
interest index helped them to drive a real-time feedback. This feedback showed
some group characteristics in different modes: individual PDA feedback, personal
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audio feedback, haptic feedback in the shoulder and public shared projected display.
They studied these group characteristics in different contexts like speed dating and
brainstorming sessions.

Some simpler versions of feedback which leverage the audio cues (like speaking time)
during collaboration have proved effective in the past. For instance, Bachour et al.
(2010) performed an experiment to measure audio participation where each group
(with 3-4 members) performed a task around a smart table. It gave them real-time
feedback during the task by glowing different coloured LED lights for each member.
The number of LED lights that glowed for each colour denoted the total speaking
time for that member. They found that a real-time feedback helped to maintain the
equity of audio participation among the members. Another similar approach was
used by Bergstrom and Karahalios (2007) with the help of a conversation clock. In
this clock, different coloured concentric rings represented spoken participation of
each member in the 4 member group. The bars and the dots in the ring denoted the
length of conversation and periods of silence respectively.

Moving on to the epistemological aspect of collaboration, Tausch et al. (2014)
used an intuitive metaphorical feedback moderated by human observers during
collaborative brainstorming. Three members in each group performed the task. The
group members were supposed to discuss a certain topic and their collaboration was
measured by the number of ideas generated. A comparison metric for collaboration
such as a baseline was calculated as the average number of ideas generated by all
members. Using this baseline, each group member was marked as below average
or above average depending on the number of ideas generated by each member.
Then the human observers controlled the public shared display which showed a
metaphorical garden. Each group member was represented by a flower and the group
was displayed as a tree with leaves, flower and fruit. The growth of the flower and
the tree symbolized the participation (measured by the contribution of ideas) of the
individual and the group respectively. More balanced participation was shown by
a well grown tree with leaves, fruits and flower. If a group was having unbalanced
participation for a long time then lightning flashes were shown in the group garden.
Another example of feedback during collaborative brainstorming was implemented
by Shih et al. (2009). It supports collaborative conceptual mapping to discuss a topic
and organize the ideas.

Besides the use of visual and haptic feedback was effective in some collaboration tasks
around a TUI. Anastasiou and Ras (2017) gave real-time textual and haptic feedback
to each group consisting of 3 members working around a TUI. The group members
were needed to use different objects and find the desired power consumption using
the TUI. At the end, they used a questionnaire and found that most participants of the
experiment favoured the use of both visual and haptic feedback over audio feedback.
Martinez-Maldonado et al. (2015a) used a TUI and gave real-time feedback on group
performance for the teachers in tablets so that they can intervene when needed and
can also make a post-hoc reflection after the task is over.

Use of external sensing devices to facilitate collaboration during meetings has proved
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its worth before. Kim et al. (2008) used a sociometric badge2 which acted as a
meeting mediator to capture audio and postures during meetings of 4 members in
one group. This badge bridged the gap of dominance and increased the equity of
participation among the group members using a real-time feedback on their personal
mobile phones. This feedback showed a circle in the middle of a screen connected by
four lines to small squares in each corner of the screen representing the individual
group members. The colour and position of the circle denoted the interactivity
of the group. When the group had a balanced participation then the circle was
darker in colour and in the centre of the screen. The thickness of lines connecting
the circle represented the speaking time of each group member. Apart from the
personal mobile display to give feedback, Balaam et al. (2011) used an ambient
display showing a coloured circle visualization based on the non-verbal indicator of
synchrony during a collaborative task of calendar planning. DiMicco et al. (2004)
used a shared group display to influence the speaking participation of each group
member during a group activity.

In summary, most of these studies were in controlled conditions with small groups
consisting of dyads and triads only. Table 1.2 shows the overview of feedback mech-
anisms used during co-located collaboration. Some real-time feedback mechanisms
acted as a mere reflection for the group to self-regulate instead of an actionable
feedback; while others used a post-hoc analysis for the teachers (or facilitators) to
reflect on the group activity. The mode of display varied from a public display to
smart phone display.

In a nutshell, most of the studies in related work are in controlled conditions and
using specialized furniture, TUI and badges. These settings can be suitable for adhoc
CC which can be difficult to adapt in a dynamic setting. They also do not cater to the
privacy and fairness of individuals. Most of these studies employ human observers
as post-hoc annotators for coding videos to detect traces of collaboration. To tackle
these issues, we devise a human-based prototype where privacy, in-the-wild setting
and dynamic design is at the centre of our WOz study.

2An electronic sensing device worn around the neck that can collect and analyze social dynamics
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Table 1.2 Overview of studies on co-located collaboration feedback.

References Indicators Feedback

Kim et al. (2008) Total speaking time &
body posture

Graphical with coloured
shape and lines using per-
sonal mobile screens

Tausch et al. (2014) Number of ideas Metaphorical as a group-
garden using public shared
display

Kulyk et al. (2005) Speaking time & eye
gaze

Graphical with coloured con-
centric circles using public
table-top private projection

Terken and Sturm
(2010)

Speaking time & eye
gaze

Graphical with coloured con-
centric circles using public
table-top private projection

Madan et al. (2004) Nodding, speech fea-
tures & galvanic skin re-
sponse

Graphical group characterist-
ics using audio, haptic, PDA
and public shared display

Bachour et al.
(2010)

Total speaking time Coloured LED light using pub-
lic shared table top LED dis-
play

Bergstrom and
Karahalios (2007)

Total speaking time Coloured concentric rings
with lines and dots using pub-
lic shared table top display

Balaam et al.
(2011)

Pointing Coloured circle visualization
using ambient display

Martinez-
Maldonado et al.
(2015a)

Log data about different
actions performed with
the TUI

Pie chart and other statistical
charts using private tablet for
teachers

Anastasiou and Ras
(2017)

Log data about content
knowledge from TUI

Textual and haptic using pub-
lic TUI display

DiMicco et al.
(2004)

Total speaking time Coloured bar charts using
public shared display

1.3 A WOz study: Designing the research prototype
Based on our analysis, we aimed for creating a flexible research infrastructure that
allows us to study feedback in CC making use of different indicators and combining
them in different feedback instruments and media. We followed a design-based
approach focusing on a specific type of meeting and evaluated different types of
indicators, human-observer interfaces, as well as feedback mechanisms. The main
components of our research prototype are a defined set of indicators and sensors, a
user interface for CC observation managed by human observers, as well as a set of
feedback components.
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Figure 1.1 Meeting room Figure 1.2 Annotator room Figure 1.3 Public display

1.3.1 Experimental context
We performed the experiments during three PhD meetings with 3-7 members in
each meeting in the room as shown in figure 1.1. Due to the frequent availability
of these meetings and ease of not designing the task per se, we chose them. Our
main focus was to execute the study in-the-wild and preserving the privacy. Thus,
we used a human annotator who was present in the adjacent room separated by a
one-sided transparent wall as shown in figure 1.2. Although it is difficult to see in the
picture, the visibility through the wall from the side of the annotator was transparent;
while the visibility from the meeting room was opaque. A microphone was used
to listen to the conversation in the other room but audio was not recorded. The
real-time feedback was shown on a big shared public display in the meeting room (as
depicted in figure 1.3) which was managed by the annotator. The real-time feedback
visualization could make use of observation data from the human observer and also
visualize raw-data, e.g. the audio volume of the group work. The collaborators got
a virtual sense of being tracked by a microphone automatically when they saw the
changing real-time feedback of their speaking participation on the screen.

1.3.2 Data logging
For the sake of clarity in data logging, we have segregated the multimodal channel
annotation into verbal and non-verbal (i.e., gestures and postures) channels and
identified different non-verbal indicators as: looking at laptop or peers; looking
down; looking at the feedback; typing with laptop; and making different hand
gestures. The verbal indicators are: occurrence, pauses, overlaps, interruptions in
speech; affirmatives in speech; and asking questions. But, to ease the logging process
for the human annotator, we chose to only focus on the simpler observable audio
cues which is the speaking time and turn taking of each group member in a first
study. The speech-based cues are ubiquitous in any collaboration and non-verbal
cues may be difficult to monitor for one annotator in a large group setting. The
annotator was seeing the annotation interface embedded in a Google sheet as shown
in figure 1.4. To preserve the privacy, we gave the annotator a coding sheet where
each collaborating member was given an alias name from the English alphabet.
Moreover, each participating member signed a consent form. Whenever a person
starts speaking, the annotator pressed the corresponding button in the interface
which automatically creates a cell in the Google sheet with the start time and name
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Figure 1.4 Annotation inter-
face

Figure 1.5 Mid feedback Figure 1.6 End feedback

of that person. Whenever the annotator presses another person’s button, the end
time of the previous person is registered in the sheet. This was possible as the
buttons were coupled with a JavaScript to perform the operation. To ensure the
reliability of the coding scheme, we had a provision to include multiple annotators
but did not use it for our experiments as it involved only simple clicking of a button.

1.3.3 Modeling participation during collaboration
The sheet interface was connected to a chart embedded in Google Slides which
was updated in real-time when a value is entered by pressing a button. The other
columns in Google sheet were automatically populated based on the defined formula
which calculates the cumulative speaking time of each member from the beginning
of the meeting. Figure 1.5 shows the group dynamics after the first 30 minutes
during a meeting using a line chart as displayed during the meeting on the big public
shared display in the room. The times shown on the horizontal axis is the plot time
obtained from the end time of speaking of a member. The value in vertical axis is the
total speaking time in seconds from the beginning of the meeting. Figure 1.6 shows
the status of the line chart at the end of the meeting. Here, the speaking time and
turn taking represented the participation of each group member. We also collected
oral feedback from both the annotators and the collaborators during the iterative
design phase.

1.3.4 Results
From our first three iterations in the PhD meetings, we developed a first prototype for
analyzing turn-taking and speaking time feedback. Our results showed that we need
a higher level annotation interface. Thus, we supported human observers in that they
only need to press a button when a new person starts talking. For the visualization
on the public shared display, we experimented with different visualizations of the
speaking time. Based on participants’ feedback we altered the display format from an
original pie chart to a line chart for displaying the development of the conversation
over time. An example of the feedback at different times of a meeting can be seen in
figure 1.5 and 1.6. We can observe that speaker B, who is a second year PhD student,
dominates the conversation in the first 30 minutes; it was his turn to speak regarding
his PhD project at that time. But, from that time on-wards he stops to participate
in the meeting; indicated by the line parallel to horizontal axis in figure 1.6. We
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can also observe at the end of the meeting that speaker A, who is the promotor, has
spoken the most and changed turns very often to intervene during the meeting; the
turn-taking was evident from the frequent change of the shape of the line indicated
by small or large spikes.

1.4 Discussion
RQ1: On the multimodal indicators during CC indicating collaboration quality
— Based on the literature study, we discovered different multimodal indicators during
CC in multiple contexts. They can be grouped into social (i.e., verbal, non-verbal and
physiological) and epistemological (i.e., ideas and data logs) indicators. For detecting
the social indicators, sensors have been used in past works. But, for detecting the
epistemological indicators human help was required as it is difficult for sensors to
automatically detect the number of ideas generated from speech by understanding
the semantics.

RQ2: On the feedback during CC — Feedback during CC is either real-time (for
reflection or guiding) or post-hoc (for the purpose of reflection). This brings into
the picture two stakeholders: the teachers (or facilitators) and the group members.
We need this distinction as it will help in designing the feedback. Some works used
TUI and other electronic mediums like Interactive White Boards (IWB) and tablets
during collaboration which requires a lot of preparation before a collaborative task.
Therefore, it is difficult to use it in real-world dynamic settings. Besides, there is
a trade-off between personalization for the group and privacy. More personalized
feedback meant for the whole group is less privacy preserving. Thus, there should
be a decision on the level (i.e., group, individual or both) of feedback to be shown
depending on the circumstances at hand.

On the research prototype to give real-time feedback — We take a step in build-
ing an initial prototype design with the aim to facilitate real-time collaboration
during meetings. We were successful in building a click-based interface for the
annotator which also reduces memory overhead. This helps us to create a hybrid set
up without building an actual automated sensor-based system to experiment with
different types of real-time feedback mechanisms during CC. We can later use these
insights to build the sensor-based or hybrid set up. Here, we can build individual
components in a modular fashion to track other indicators of collaboration quality;
and integrate them to a single dashboard.

1.5 Conclusions & Future Work
Collaboration being an important skill and ubiquitously present in our day to day
activities, we try to look into the different collaboration indicators in various contexts
in the literature. We find different types of indicators like gaze, speaking time,
posture, gesture, number of ideas generated, etc. Then we look into the impact
of feedback during collaboration and find that visual real-time feedback has some
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impact on the collaboration like improving the equity of audio participation. This
feedback can range from private displays (like PDA, mobile phones) to a more public
one (like TUI, shared display).

Based on this overview, we took a step further and built a real-time feedback
prototype during collaboration based on a privacy-preserving WOz study in-the-wild.
Here, we study collaboration during co-located PhD meetings using human observers
acting as a proxy for sensors. We find that the human observers could easily track
‘who spoke when and for how much time’ by pressing a button.

As future work suggestions, we need to define the goal and outcome of the collab-
oration task and make it clear in the evaluation criteria as to whether we measure
collaboration as a process, outcome or both. Then, we can focus on the feedback
mechanisms for facilitating collaboration. We can also borrow some insights from the
mapping of multimodal data to feedback in an individual learning context (Di Mitri
et al., 2018a). The feedback can be: human based, sensor based or a hybrid of
both. We need to decide the type (number of pointing gestures, speaking time,
number of interruptions, number of eye contact with peers, etc.), modelling (i.e.,
individual, group or both) and display of feedback (i.e., personal, public or both)
based on action-based research (Dyckhoff, 2014) where we need to take the prelimin-
ary feedback of different stakeholders like teachers (or facilitators) and the group
members. Our long term goal is to do action-based research and build a sensor-based
automated (or hybrid) feedback system during CC using the currently built research
prototype. Here, we can include different feedback components to identify multiple
indicators of collaboration and proceed towards an automated system using deep
neural networks to integrate data from multiple sensors (Schneider et al., 2018).
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Chapter 2

Literature Review on Co-Located
Collaboration Modeling Using Multimodal
Learning Analytics—Can We Go the Whole
Nine Yards?

Co-located collaboration (CC) is a very complex process that involves subtle human
interactions that can be described with indicators like eye gaze, speaking time, pitch,
and social skills from different modalities. Continuing from Chapter 1, we do an
in-depth review of the indicators of collaboration to understand how quality of collab-
oration is detected and measured. With the advent of sensors, multimodal learning
analytics has gained momentum to detect CC quality. Indicators (or low-level events)
can be used to detect CC quality with the help of measurable markers (i.e., indexes
composed of one or more indicators) which give the high-level collaboration process
definition. However, this understanding is incomplete without considering the scen-
arios (such as problem solving or meetings) of CC. The scenario of CC affects the set
of indicators considered: for instance, in collaborative programming, grabbing the
mouse from the partner is an indicator of collaboration; whereas in collaborative
meetings, eye gaze, and audio level are indicators of collaboration. This can be a
result of the differing goals and fundamental parameters (such as group behavior,
interaction, or composition) in each scenario. In this review, we present our work on
profiles of indicators on the basis of a scenario-driven prioritization, the parameters
in different CC scenarios are mapped onto the indicators and the available indexes.
This defines the conceptual model to support the design of a CC quality detection
and prediction system.

This chapter is based on:

Praharaj, S., Scheffel, M., Drachsler, H., and Specht, M., "Literature Review on
Co-Located Collaboration Modeling Using Multimodal Learning Analytics—Can We
Go the Whole Nine Yards?," IEEE Transactions on Learning Technologies, 14(3), pp.
367–385, 1 June 2021, doi: 10.1109/TLT.2021.3097766.
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2.1 Introduction
Collaboration is often mentioned as one of the important 21st-century skills (Dede,
2010) and a part of the 4Cs skill set (Kivunja, 2015) (along with critical thinking,
communication, and creativity). When two or more persons work towards a com-
mon goal then collaboration occurs (Dillenbourg, 1999). Most of the works in the
field of learning analytics support for collaboration have focused on the analysis
of distributed (or online) collaboration (Jeong and Hmelo-Silver, 2010). However,
with the pervasive use of sensors (Grover et al., 2016; Kim et al., 2008), multimodal
learning analytics (MMLA) (Blikstein, 2013; Praharaj et al., 2018a; Di Mitri et al.,
2018b) has picked up the pace, thus shifting the focus to the analysis of co-located
collaboration (CC) (or face-to-face collaboration) with the help of sensor technology
(Grover et al., 2016; Kim et al., 2008; Praharaj et al., 2021b; Tausch et al., 2014).
Furthermore, sensor technology can be easily scaled up (Reilly et al., 2018) and has
become affordable and reliable in the past decade (Starr et al., 2018). CC takes place
in physical spaces where all group members share each other’s social and epistemic
space (Praharaj, 2019). “The requirement of successful collaboration is complex,
multimodal, subtle, and learned over a lifetime. It involves discourse, gesture, gaze,
cognition, social skills, tacit practices, etc.” (Stahl et al., 2013, pp.1–2, emphasis
added). According to Johnson and Johnson (2009), positive interdependence, in-
dividual accountability, promotive interaction, the appropriate use of social skills,
and group processing are five variables that mediate the effectiveness of collabora-
tion. Similarly, Meier et al. (2007) identified five aspects of collaborative process
and nine dimensions of rating collaboration quality: communication (sustaining
mutual understanding, dialogue management), joint information processing (inform-
ation pooling, reaching consensus), coordination (task division, time management,
technical coordination), interpersonal relationship (reciprocal interaction), motiv-
ation (individual task orientation). The five aspects of collaboration quality from
these two works (Johnson and Johnson, 2009; Meier et al., 2007) can be matched
onto each other in the following way: 1) communication/appropriate use of social
skills; 2) joint information processing/group processing; 3) coordination/positive
interdependence; 4) interpersonal relationship/promotive interaction; and 5) mo-
tivation/individual accountability. But, the work by Meier et al. (2007) elaborates
into fine-grained subcomponents of these five aspects. Successful collaboration also
depends on the focus of the assessment of collaboration (i.e., whether collaboration
is assessed as a process or as an outcome (Child and Shaw, 2015)).

Quality of CC can be detected by different indicators of collaboration such as total
speaking time (Bachour et al., 2010) or eye gaze (Schneider et al., 2015). These
indicators can be processed and grouped together to different indexes which act
as the measurable markers of CC quality. For instance, the quality of collaboration
within a group can be good if there is higher equality (i.e., the index) of total
speaking time (i.e., the indicator) among the group members (Bachour et al., 2010).
Moreover, different scenarios of CC such as collaborative programming (Grover
et al., 2016), collaborative meetings (Kim et al., 2008; Terken and Sturm, 2010), or
collaborative brainstorming (Tausch et al., 2014) each has a different set of indicators
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denoting the quality of collaboration. For instance, in collaborative programming
relevant indicators of collaboration include pointing to the screen, grabbing the
mouse from the partner, and synchrony in body posture (Grover et al., 2016);
whereas in collaborative meetings gaze direction, body posture, or speaking time of
group members are more relevant indicators for collaboration quality (Terken and
Sturm, 2010; Kim et al., 2008; Stiefelhagen and Zhu, 2002). This difference can be
attributed to the goals of the tasks performed during CC and the structuring of the
task (Collazos et al., 2007, 2003). In addition, the fundamental parameters of CC
like team composition (such as experts or initiators), the behavior of team members
(such as dominance or rapport) vary from group to group. For example, a group
with fewer dominant members during CC shows a better quality of collaboration
(Kim et al., 2008). Therefore, in order to get a holistic view, a scenario-driven
prioritization and a mapping of the parameters of CC onto the indicators need to
be done. So, the definition of collaboration and its quality varies across different
research fields. It is dependent on the focus of assessment, goals, fundamental
parameters (such as team composition and team behavior), the scenario in which
collaboration is studied, and the way it has been operationalized in different research
fields.

Furthermore, such indicators are complex interactions. These indicators cannot be
detected as easily as the interactions from online data logs (or chat logs) generated
during the distributed (or remote) collaboration. Thus, to understand collaboration
dynamics during CC, a preliminary analysis needs to be performed to identify
indicators relevant for the quality of collaboration. According to Dillenbourg et al.
(1996); Dillenbourg and Traum (2006), we are in the third stage of research on
collaboration (after proving the effectiveness of collaboration in the first stage and
finding the conditions that predict the effects of collaboration in the second stage).
In the third stage, the primary goal is to understand the interactions that take
place during collaboration. To this end, the following research questions need to be
answered with the help of a literature review:

RQ 1: What collaboration indicators have been used in research to understand the
quality of CC?

RQ 2: What is the impact of different scenario-based goals and parameters for CC on
the relevance of the different indicators?

The remainder of the paper is structured as follows: in the methodology section
(Section 2.2) we describe the approach taken for this review; it is followed by an
explanation of the results obtained from the review (Section 2.3); this is followed
by a discussion (Section 2.4) of the results; finally, a conclusion (Section 2.5) is
drawn and we throw some light on limitations, future work and open questions to
be answered.
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2.2 Methodology
Our broader objective was to find the CC indicators that have been detected using
different modalities to understand the quality of CC. We, therefore, conducted a
literature review following the guidelines of the PRISMA statement (Liberati et al.,
2009). The PRISMA statement lists a step-by-step procedure to do a systematic
literature survey. According to it, the information flow in a systematic literature
review goes through four different phases, that is, identification, screening, eligibility,
and inclusion of articles. In the identification phase, records are identified through
database screening using search terms. In the screening phase, duplicate articles
are removed and some other articles are removed based on quick scanning. In
the eligibility phase, full-text articles are assessed based on the inclusion–exclusion
criteria. Finally, articles are included based on the scope of the review. We ran
our search in the following databases: ACM Digital Library, SpringerLink, Science
Direct, IEEE Xplore, International Society of the Learning Sciences repository, and
Google Scholar. We used the following search terms: (multimodal indicators) AND
(multimodal learning analytics) AND (collaborative) AND (quality of collaboration).
This search term was formulated based on the scope and objectives of the review as
mentioned in the research questions.

While searching, a first screening was performed by scanning the title and abstract
of the articles and then removing any duplicates. The end result of this screening
came to 186 articles. We then further narrowed down the number of articles based
on the inclusion and exclusion criteria. The inclusion criteria is as follows.

1. The full text is in English.

2. A peer-reviewed journal article, full paper, or a workshop paper.

3. Description about both CC and use of indicators during CC.

The exclusion criteria is as follows.

1. Description about online (or remote) collaboration.

2. A demo or a poster paper.

3. Architectural details or technical implementation of a CC detection framework
only.

4. Framework for assessment and evaluation of user-perceived benefits only.

5. Description about student retention, pedagogy and course design using a
multimodal approach, big data engineering in CC, personality detection using
MMLA, and human–machine collaboration.

Finally, 88 articles were then deemed fit for our review. We do not consider the
number of groups studied during collaboration in each of these articles in the
inclusion and exclusion criteria.
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2.3 Results
In this section, we describe the results of our analysis. In the first round of analysis,
the selected publications were classified according to the sensors, indicators, and
indicator types. One or more indicator types can be tracked using the hardware
device (i.e., a sensor). For instance, a microphone sensor can only track audio
indicator type whereas multiple indicator types like audio, posture, gesture, and
spatial can be tracked by a Kinect (i.e., an integrated sensor which can simultaneously
act as an infrared, depth, audio and video sensor). This can give an idea about
the sensors used in different CC studies. Each indicator type cluster is composed
of multiple indicators of CC detected by the sensors. For example, audio data
is composed of different indicators such as pitch, amplitude, and speaking time
detected by the microphone sensor. Most articles referred to a combination of
different modalities like audio and video (Viswanathan and VanLehn, 2017; Hardy
and White, 2015; Andrade-Lotero et al., 2013). But, for the sake of clarity and ease
of explainability, they have been reported as unimodal rows in all the tables where
each indicator type belongs to only one modality. So, there will be an overlap of
the references listed under each of these indicator types which do not imply that all
the articles essentially were unimodal in nature. These indicators have been used to
define collaboration quality with the help of high-level proxy measurements which
in this review are defined as indexes obtained by aggregating one or many indicators.
For example, a group which exhibits higher equality of total speaking time of each
member during CC has a better quality of collaboration (Bachour et al., 2010).

Finally, we made a scenario-driven prioritization to choose a set of indicators de-
pending on the particular scenario of CC. This formed the basis for modeling the
collaboration detection framework by mapping the fundamental parameters in those
scenarios onto the indicator types and indexes. There are different fundamental
parameters in each scenario because of differing goals of different scenarios, team
composition (such as roles and compulsory interaction with specific artifacts be-
cause of the task type), and varied group behavior (such as dominance or coupling).
For example, some CC tasks already have preassigned roles (Hare, 1994) for each
group member and in some tasks, roles emerge during collaboration (Strijbos and
Weinberger, 2010). Some group members are more dominant while others are not.

Then we classified the articles based on the methodologies employed and the type
of study, that is, correlational or interventionist (where feedback mechanisms had
been employed to support CC) to get a high-level overview. Studies used different
methodologies such as observations (e.g., Scherr and Hammer (2009); Davidsen
and Ryberg (2017); Praharaj et al. (2018b); Tausch et al. (2014)), sensor-based
approach (e.g., Cukurova et al. (2017a, 2018); Spikol et al. (2017b); Kim et al.
(2008)), standard measurement scales like that of Meier’s (e.g., Reilly et al. (2018)),
self-reporting mechanism (e.g., Anastasiou and Ras (2017); Kim et al. (2008)), and
indirect learning outcome performance measures (e.g., Reilly et al. (2018)). The
types of study found are: correlational study (e.g., Cukurova et al. (2017a, 2018,
2017b)) and interventionist study (e.g., Praharaj et al. (2018b); Kim et al. (2008);
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Figure 2.1 Outline for the grouping of the articles along with the terminology used in the
review (i.e., sensors, indicators, indicator types, and indexes).

Tausch et al. (2014)).

2.3.1 Indicators to Assess Collaboration Quality
As a first step, all articles obtained were grouped according to the sensors, indicators,
and indicator types. Fig. 2.1 (which shows some sensors) gives an outline of the
grouping of the articles included in this review. First, the sensor data streams give
rise to meaningful indicators of collaboration obtained after processing. Similar
indicators are clustered together to different indicator types. For instance, the audio
stream obtained from the microphone (sensor) is processed to obtain the total
speaking time (indicator) which is put into the audio (indicator type) cluster. Then
these indicators are aggregated and processed to form the high-level collaboration
quality measure. For instance, the total speaking time (indicator) of each group
member can be compared to measure the equality of total speaking time of the group
(index). If the value of this equality index is high then the quality of collaboration
is good. Thus, these high-level indexes are made up of the low-level indicators of
collaboration (by processing and aggregation) and act as a proxy for measuring
collaboration quality. The indexes (i.e., synchrony, equality, individual accountability,
intra-individual variability, information pooling, mutual understanding, and reciprocal
interaction) outlined in the results section are based on the practically detected
indexes as found in the literature review. Although theoretically different indexes of
collaboration quality have been outlined by Meier et al. (2007), only a few have been
operationalized. Meier’s scale was used by the articles considered for this review
when they used a practically detected collaboration quality measure.
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Sensors, indicators and indicator Types
Indicators of CC are obtained from different modalities like audio and video using
different sensors like microphone and Kinect. The indicator types represent the
cluster of similar indicators of collaboration detected by the sensors. One or more
indicator types can be tracked by using a particular sensor. Table 2.1 gives an
overview of the different sensors and their indicator types.

Indicator type—audio Most of the articles contained audio as an indicator type.
Audio is composed of the following indicators: prosody of sound such as change
in pitch, spectral property variation, change in tone, and intensity (Bassiou et al.,
2016); nonverbal features like the total speaking time of group members (Bergstrom
and Karahalios, 2007; Bachour et al., 2010), the number of interruptions (Oviatt
et al., 2015), and overlap or no overlap duration of speech (Bassiou et al., 2016);
the total speaking time of a member together with the attention of other group
members measured by their gaze (Terken and Sturm, 2010); linguistic features
such as frequency of pronouns used, length of the used sentences, and number
of prepositions used (Schneider and Pea, 2014a, 2015). It has been found that a
combination of both group speech-based and individual speaker-based indicators is
a good predictor of the collaboration quality (Bassiou et al., 2016). The audio was
captured in different settings (e.g., working around a tangible user interface (TUI)
(Martinez-Maldonado et al., 2013), working with a sociometric badge worn around
the neck (Kim et al., 2008), and working under camera observation in videotaped
post hoc studies (Scherr and Hammer, 2009; Davidsen and Ryberg, 2017)).

To report further, Terken and Sturm (2010) gave real-time feedback to group mem-
bers’ in meetings by analyzing their total speaking time and eye gaze. Different
colored circles were used to show the feedback by projecting in front of the group
member on the table top. These colored circles represented attention to and from
speakers and listeners measured by eye gaze and the total speaking time of that
group member. On evaluating the effect of the feedback it was found that: the feed-
back was accepted as a positive measure by most group members; use of feedback
promoted a balanced participation among the group members. This participation
was measured in terms of the total speaking time of each member. It was found
that the speaker and listener eye gaze measured to track the total attention of the
listener and speaker was not a good collaboration quality indicator. According to the
authors, controlling eye gaze was intuitively difficult as compared to controlling the
total speaking time even though both can be consciously controlled.

Other studies also used the total speaking time as an indicator of collaboration
(Bergstrom and Karahalios, 2007; Bachour et al., 2010). The group was having a
conversation around a smart table. The total speaking time of each member was
reflected back to them by a LED light display (Bachour et al., 2010) and concentric
circle visualization (Bergstrom and Karahalios, 2007) on the table top. This mirroring
feedback helped to regulate the equality of participation during the conversation.
Therefore, the group that had better equality of speaking time had a better quality
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Table 2.1 Overview of Sensors1 and Indicator Types2

Indicator
types

Sensors References

Audio Kinect, mi-
crophones,
sociometric
badge

Lubold and Pon-Barry (2014), Nakano et al.
(2015), Luz (2013), Grover et al. (2016), Wors-
ley and Blikstein (2015), Martinez-Maldonado
et al. (2017a), Oviatt et al. (2015), Scherer
et al. (2012), Schneider and Pea (2014a),
Spikol et al. (2017b), Echeverria et al. (2017),
Ochoa et al. (2013), Schneider and Pea (2015),
Scherr and Hammer (2009), Terken and Sturm
(2010), Kim et al. (2008), Bergstrom and
Karahalios (2007), Bassiou et al. (2016),
Thompson et al. (2014), Viswanathan and
VanLehn (2017), Kim et al. (2015), Martinez-
Maldonado et al. (2013), Bachour et al.
(2010), Spikol et al. (2017b), Praharaj et al.
(2018b), Worsley and Blikstein (2018), David-
sen and Ryberg (2017), Emara et al. (2017),
Rodríguez et al. (2017), Dornfeld et al. (2017),
Fake et al. (2017), McBride et al. (2017), Abdu
(2015), Flood et al. (2015), Wise et al. (2015),
Wake et al. (2015), Martin et al. (2015),
Andrade (2015), Dornfeld and Puntambekar
(2015), Hardy and White (2015), Andrade-
Lotero et al. (2013), Thompson et al. (2013),
Martinez et al. (2011), Wong et al. (2011), Jo-
hansson et al. (2011), Noel et al. (2018), Bhat-
tacharya et al. (2018), Stewart et al. (2018),
Olsen and Finkelstein (2017), Henning et al.
(2009)

Posture Kinect, cam-
era, ceiling
mounted
time-of-flight
sensors,
sociometric
badge

Grover et al. (2016), Ochoa et al. (2013),
Schneider and Blikstein (2015), Scherr and
Hammer (2009), Kim et al. (2008), Cukur-
ova et al. (2018), Cukurova et al. (2017a),
Cukurova et al. (2017b), Viswanathan and Van-
Lehn (2017), Dich et al. (2018), Davidsen and
Ryberg (2017), Stiefelhagen and Zhu (2002),
Wise et al. (2017), Bhattacharya et al. (2018),
Reilly et al. (2018)
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Indicator
types

Sensors References

Gesture Kinect, cam-
era

Grover et al. (2016), Worsley and Blikstein
(2015), Spikol et al. (2017a), Echeverria
et al. (2017), Ochoa et al. (2013), Martinez-
Maldonado et al. (2015a), Schneider and
Blikstein (2015), Scherr and Hammer (2009),
Kim et al. (2008), Anastasiou and Ras
(2017), Cukurova et al. (2018), Cukurova
et al. (2017a), Cukurova et al. (2017b),
Viswanathan and VanLehn (2017), Martinez-
Maldonado et al. (2013), Worsley and Blikstein
(2018), Davidsen and Ryberg (2017), Wise
et al. (2017), Emara et al. (2017), Flood et al.
(2015), Wake et al. (2015), Hardy and White
(2015), Andrade-Lotero et al. (2013), Martinez
et al. (2011), Johansson et al. (2011)

Eye gaze camera, eye
tracker, eye
tracking
glass

Dierker et al. (2009), Nakano et al. (2015), Li
et al. (2010), Grover et al. (2016), Schneider
and Pea (2014a), Spikol et al. (2017a),
Schneider et al. (2015), Scherr and Hammer
(2009), Terken and Sturm (2010), Dich et al.
(2018), Andrist et al. (2018), Davidsen and
Ryberg (2017), Stiefelhagen and Zhu (2002),
Flood et al. (2015), Martinez-Maldonado et al.
(2015b), Wake et al. (2015), Andrade (2015),
Andrade-Lotero et al. (2013)

Spatial Kinect, cam-
era

Martinez-Maldonado et al. (2017a), Healion
et al. (2017), Schneider and Blikstein (2015),
Kim et al. (2008), Martinez-Maldonado
et al. (2017b), Spikol et al. (2017b), Spikol
et al. (2018b), Wise et al. (2017), Martinez-
Maldonado et al. (2015b), Reilly et al. (2018)
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Indicator
types

Sensors References

Content (i.e.,
ideas, know-
ledge, or task
related log
data)

tangible-
user-
interface
(TUI),
human
observer,
tablets

Tausch et al. (2014), Kim et al. (2008),
Thompson et al. (2013), Coopey et al. (2014),
Harrer (2013), Fischer et al. (2002), Echever-
ria et al. (2017), Ochoa et al. (2013), Martinez-
Maldonado et al. (2015a), Schneider and
Blikstein (2015), Wong-Villacrés et al. (2016),
Scherr and Hammer (2009), Anastasiou and
Ras (2017), Granda et al. (2015), Thompson
et al. (2014), Viswanathan and VanLehn
(2017), Martinez-Maldonado et al. (2013),
Ahonen et al. (2018), Dornfeld et al. (2017),
Fake et al. (2017), Oshima et al. (2017),
McBride et al. (2017), Abdu (2015), Flood
et al. (2015), Martinez-Maldonado et al.
(2015b), Manske et al. (2015), Wise et al.
(2015), Martin et al. (2015), Hardy and White
(2015), Hashida et al. (2013), Martinez et al.
(2011), Wong et al. (2011), Olsen and Finkel-
stein (2017)

Writing digital pen Nakano et al. (2015), Zhou et al. (2014),
Scherer et al. (2012), Ochoa et al. (2013),
Wong-Villacrés et al. (2016), Granda et al.
(2015)

Physiological empatica Worsley and Blikstein (2015), Pijeira-Díaz
et al. (2016), Dich et al. (2018), Ahonen
et al. (2018), Worsley and Blikstein (2018),
Malmberg et al. (2019), Pijeira-Díaz et al.
(2019), Henning et al. (2009), Henning et al.
(2001), Starr et al. (2018), Elkins et al. (2009)

Self-reports online forms,
question-
naires

Wong-Villacrés et al. (2016), Kim et al. (2008),
Anastasiou and Ras (2017), Pijeira-Díaz et al.
(2016), Granda et al. (2015), Dierker et al.
(2009)

1Sensors report which hardware sensors have been used to detect these indicator types in each of these
referenced articles.
2Indicator types report the cluster of similar indicators.
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of collaboration as measured by a posttest. However, this type of reflective feedback
can be shallow in nature. It assumes that self-reflection will promote collaboration
among the group members but doesn’t drive them to actively collaborate.

To analyze other audio indicators in depth, Bassiou et al. (2016) used non-lexical
indicators of audio. They used a combination of manual annotation and support
vector machine to predict the collaboration quality of the group. Types of collab-
oration quality marked by expert annotators are: good (when all 3 members are
working together and contributing to the discussion), cold (when only two mem-
bers are working together), follow (when one member is taking the lead without
integrating the whole group) and not (when everyone is working independently).
This coding was based on two types of engagement: simple (i.e., talking and paying
attention) and intellectual (i.e., actively engaged in the conversation). According
to them, a combination of the group speech activity indicators (i.e., solo duration,
overlap duration of two persons, overlap duration of all three persons, the ratio of
the duration of speaking time of the least and most talkative person in the group,
and the ratio of the duration of the speaking time of second most talkative student
to the most talkative student in the group) and individual speaker-based indicators
(i.e., spectral, temporal, prosodic and tonal) were good predictors of collaboration
quality as marked by the annotators. Moreover, the group-level indicators alone
were good predictors of collaboration quality. They found that it was because the
individual speaker-based indicators are agnostic to the group information contrary
to the group speech activity indicators. All these indicators were fed to a machine
learning classifier to determine the quality of collaboration, so in the end, it was a
black-box approach. They did not employ any fine-grained in-depth analysis which
could have helped to find the relationship of different indicators with the quality of
collaboration.

Similarly, speaker-based indicators like the change in intensity, pitch, and jitter were
used to detect collaboration quality among working pairs (Lubold and Pon-Barry,
2014). Rapport was detected from these indicators and compared to the self-reported
rapport to find the collaboration quality. The prediction gave a high-level overview
of non-lexical features like pitch but missed the fine-grained semantic meaning of
different non-lexical features such as turn-taking, emotional tone while speaking,
cross-talk and number of interruptions. These fine-grained vocal characteristics
such as turn-taking and overlap of speech are distinctive of collaboration quality;
more frequent speaker changes (i.e., turn-taking) with overlap of speech (Kim et al.,
2015) indicates a good quality of collaboration. Previous research also indicated that
overlap in speech is associated with positive group performance (Çetin and Shriberg,
2006; Dong et al., 2009).

Additionally, other works on CC quality focused on expertise detection and product-
ive problem-solving (Luz, 2013; Ochoa et al., 2013; Oviatt et al., 2015), estimation
of success (Spikol et al., 2017b), collaboration detection (Viswanathan and VanLehn,
2017), and differentiating student learning strategies (Worsley and Blikstein, 2015)
during CC using the audio indicator type. Oviatt et al. (2015) tracked the speech of
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students working in groups solving mathematical problems. They found that over-
lapped speech was an indicator of constructive problem-solving progress, expertise
and collaboration. Both the number of overlap in speech and the duration of the over-
lap in speech were taken into account by them. Luz (2013) used the nonverbal audio
indicators like presence or absence of speech, silence, pause, transition from group
speech to individual speech as indicators to predict performance and expertise on a
Maths dataset corpus of groups collaborating for solving mathematical problems. Us-
ing these nonverbal indicators as features, they trained a model to predict the group
expertise and their performance during collaboration. They found that these features
were able to predict the expertise but not the group performance. They did not do
any analysis to find the valence of these individual audio indicators and how each
indicator was related to the collaboration quality. Spikol et al. (2017b) used audio
level and other nonverbal indicators to estimate the success of collaboration activity
(i.e., measured by the human observers) while performing open-ended physical tasks
around smart furniture. They found that audio level alone is sufficient to predict the
quality of collaboration with high accuracy. They detected if collaboration was good
or bad but didn’t evaluate the contribution of how audio level was predicting in the
detection of the quality of collaboration.

To summarize the audio indicator type based on different studies mentioned above:
total speaking time, the number of interruptions while speaking, and overlap of
speech had been found to be good indicators to predict collaboration quality across
most of the articles of that cluster. The number of interruptions and overlap of speech
was directly proportional to collaboration quality in some studies. Apart from these
individual speaker-based indicators, the total speaking time was seen as a group
level indicator when the total speaking time of individual members was compared at
the group level to find the equality of participation. If a group had higher equality
of total speaking time, then that group had a better quality of collaboration. Other
group-level indicators (such as the ratio of the duration of speaking time of least
and most talkative member, the ratio of the duration of speaking time of second
most talkative member and most talkative member) had helped in the prediction of
collaboration quality. Some speaker-based indicators like the change in pitch and
amplitude have helped in the detection of collaboration quality, they had done so
because of not losing the group level information. For example, when the change in
amplitude of two or more group members were similar then they were said to be in
synchrony (i.e., one of the high-level measures called indexes); thus, exhibiting a
good quality of collaboration. Not all speaker-based indicators’ roles in detecting the
quality of CC had been successfully discerned. For instance, silence or presence of
speech had been used as features to train a model to detect the collaboration quality.
But, a qualitative analysis of these indicators was missing which makes it difficult
to inform practitioners as to what the occurrence of single or multiple instances of
silence or presence of speech can mean during CC.
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Indicator type—posture This indicator type comprises body posture (Schneider
and Blikstein, 2015; Grover et al., 2016; Kim et al., 2008), head movements (Cukurova
et al., 2017a, 2018, 2017b), and transitions between these postures (Schneider and
Blikstein, 2015). Schneider and Blikstein (2015) used a TUI for pairs of students to
predict learning gains by analyzing data from multimodal learning environments.
The task of the students was to rebuild a human auditory system on the TUI in two
different conditions (i.e., the discover condition where the rebuilding takes place
without instruction and the listen condition with instructions). When tracking the
posture along with the gesture using a Kinect sensor (Version 1) which can track the
posture and gesture of a maximum of four students at a time based on their skeletal
movements, it was found that the hand movements and posture movements (coded as
active, semiactive and passive) are correlated with learning gains during CC. The
more active a student was, the higher the learning gain was. Even the number of
transitions between these three phases was a strong predictor of learning. Students
who used both hands showed higher learning gains. Some of the activities that were
logged by the TUI, like the frequency of opening the information box in the TUI did
not correlate significantly with learning gain. Also, other indicators like the distance
between the group members and the synchrony in body posture did not prove to be
effective to detect collaboration quality.

Indicator type—gesture Other works used gestures of group members in open-
ended CC scenarios such as building prototypes (Spikol et al., 2017a; Cukurova
et al., 2018, 2017a). Gesture is comprised of hand movements (Cukurova et al.,
2017a, 2018), hand gestures like pointing (Grover et al., 2016), hand interactions
with an object (Spikol et al., 2017a; Cukurova et al., 2018), hand interactions
around touch screens (Martinez-Maldonado et al., 2015a; Echeverria et al., 2017)
or special interaction devices like a TUI. To elaborate further, Spikol et al. (2017a)
and Cukurova et al. (2017a, 2018) studied collaborative learning specifically in
the context of collaborative problem solving (CPS). They tracked the combination
of hand movements, head direction, and physical engagement using customized
smart furniture. The videos were then coded by experts with 0 (for passive), 1
(for semiactive) and 2 (for active) based on different combinations of head and
hand positions. These codes helped to determine synchronization and physical
engagement. A group in which all group members were coded as active for most
of the time had a higher value of synchrony. Hence the group had a good quality
of collaboration. It will be elaborated in detail in the next part where we discuss
the indexes. Another CPS context was studied by Grover et al. (2016) in pair
programming. They captured data from different modalities (i.e., video, audio,
clickstream, and screen capture) unobtrusively using Kinect. For initial training
of the classifiers using machine learning, experts coded the video recordings with
three annotations (i.e., High, Medium and, Low) when they found evidence of
collaboration between the dyads. The indicators of collaboration detected are:
pointing to the screen, grabbing the mouse from the partner, and synchrony in body
position. This classifier then later predicted the level of collaboration. Further
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qualitative analysis was not done. The problem with capturing the gestures is that
sometimes the view of the hand movements of the students gets obfuscated or
overlapped; it is solely dependent on the positioning of cameras (i.e., the angle
from which the camera can capture the frontal view or top view). Consequently,
considering different indicator types like audio and eye gaze along with gesture is
preferred.

Summarizing the gesture and posture indicator type, most of the tasks were open-
ended using TUIs. It was found that if group members used both their hands, spent
more time in an active engaging posture, and the majority of the members were
in the active posture, then they had a good quality of collaboration. However,
synchrony in body posture is not always a good marker of collaboration.

Indicator type—eye gaze This indicator type comprises the joint visual attention
(JVA) (i.e., the proportion of times gazes of individuals are aligned by focusing on
the same area of the shared object or screen). JVA is a good predictor of the quality
of collaboration for a group which is reflected by their performance. Schneider et al.
(2015) showed that JVA can be used as a reflection mechanism in co-located settings;
they showed each student their partner’s gaze patterns in real time to improve
collaboration. The higher the JVA was, the better was the quality of collaboration.
Similar to JVA, Dierker et al. (2009) used an augmented reality (AR) set up during a
collaborative object choice task; here, they established joint attention by assigning
different roles to the group members working in pairs. One member was the gazer
who had to observe an object on the head-mounted display and fixate it on the
table; then the other member who was the searcher had to find that object on the
table. One group received real-time augmented visual and acoustic feedback with
the help of AR goggles to facilitate their collaboration, whereas the other group did
not receive any feedback. It was found that the group receiving feedback had a
shorter reaction time and lower error rates during the task.

Most of the other studies on eye gaze focused on: the attention of other group mem-
bers on their peers (Terken and Sturm, 2010); determining the social context from
gaze (Li et al., 2010) during group work; observing gaze patterns in post hoc studies
(Scherr and Hammer, 2009) from the videotaped collaboration recordings; coding
the activity index (i.e., 2 for active, 1 for semiactive, and 0 for passive) of group
members interacting with an object based on eye gaze and other nonverbal features
(Cukurova et al., 2017a, 2018). Some studies (Terken and Sturm, 2010) did not find
any effect of the eye gaze of group members on the quality of collaboration. The
experiments linked with the use of eye gaze were sometimes dependent exclusively
on the shared artifacts which needed to be properly set up in the room to get the
correct measure of JVA.

Indicator type—spatial This indicator type is a mix of the proximity indicator
(i.e., the distance between the group members) (Martinez-Maldonado et al., 2017b;

36



2.3 Results

Schneider and Blikstein, 2015; Spikol et al., 2017b,a) and the positioning of the
members (i.e., their mobility) (Martinez-Maldonado et al., 2017b; Healion et al.,
2017). Some collaboration scenarios like medical simulations need the collaborating
members to move around the room (or occupy particular positions) while performing
the operation or other medical tasks. These studies did not find any relationship
between positioning in the room and the collaboration quality. However, the lesser
the distance between the group members is, the better is the quality of collaboration
(Spikol et al., 2017b,a). Other studies, however, did not find any correlation between
the distance of group members and the quality of collaboration (Schneider and
Blikstein, 2015).

Indicator type—content Apart from the indicator types discussed above, this
indicator type is a combination of ideas (Tausch et al., 2014; Kim et al., 2008) and
knowledge (i.e., the content-related knowledge obtained from the interactive devices
or the task itself) (Martinez-Maldonado et al., 2015a; Anastasiou and Ras, 2017).
Tausch et al. (2014) used human observers during collaborative brainstorming
to monitor the number of ideas generated by each member. Three members in
each group performed the task. The group members were supposed to discuss a
certain topic and their collaboration quality was measured by the number of ideas
generated. A comparison metric for collaboration such as a baseline was calculated
using the average number of ideas generated by the group. Using this baseline, each
group member was marked as below average or above average depending on the
number of ideas generated by each member. Then the feedback was shown as a
metaphorical group garden moderated by human observers. It was found that the
groups who received real-time feedback had a better quality of collaboration because
of a nearly equal number of ideas contributed by each group member in the group
without any dominance from one member. Similarly, self-reports have been used
to monitor the number of ideas generated by each member during collaborative
brainstorming (Kim et al., 2008). Content of interaction during an activity (around
a TUI) was tracked and communicated back to the group members using textual
and haptic feedback (Anastasiou and Ras, 2017) on the tabletop. In addition to
this, the actions of students around a TUI also helped in detecting the quality of
CC. Martinez-Maldonado et al. (2015a) tracked these actions and communicated
back to teachers inside a classroom in real time. In this study, the teachers gave
the students a task to work collaboratively around a TUI to build conceptual maps,
perform collaborative brainstorming and take part in scripted group meetings. The
teachers received feedback about the performance of a group both on individual
and group levels with colored visualizations, statistical displays, and notifications
on personal tablets. This enabled them to intervene immediately when they find
misconceptions or problems in any group’s performance. Most of these works employ
human observers. This is because of the semantic nature of the discussion where
automated understanding of the content is difficult by using a machine.

Many other works used TUIs or multi-tabletop touch interfaces to track the content
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of the collaborative task and activity (Echeverria et al., 2017; Granda et al., 2015;
Wong-Villacrés et al., 2016). Echeverria et al. (2017) used a combination of a
TUI-based tool called DBCollab, a personal tablet, and a Kinect sensor to track the
activity of students during a database design session in the classroom. They gave
real-time feedback to facilitate the database design task. The teacher’s solution
was stored and compared with the solution of the students; this helped to drive
the real-time feedback by comparing the similarity between both solutions. This
feedback improved collaboration. Granda et al. (2015) used a multi-tabletop TUI
for database design. They gave feedback on students’ activity to the teachers in
colored symbols. Basically, they tracked the database entity-related actions like
creating, editing, and deleting the objects. Wong-Villacrés et al. (2016) tracked
content-related activities by comparing a TUI-based set up and a paper-based set
up. They found that the group in the TUI set up had more respect for their peers,
better communication, and in turn better collaboration as compared to the group in
the TUI set up. It is due to the reason that they received continuous feedback from
the TUI about their contribution and their peers’ contribution which improved their
awareness.

Indicator types—writing, physiological, and self-reports Writing includes dif-
ferent indicators derived from the interactions using the digital pen like the pen
stroke analysis (Zhou et al., 2014). Physiological indicator type has skin temperat-
ure (Pijeira-Díaz et al., 2016) and heart rate (Henning et al., 2009) as indicators.
Pijeira-Díaz et al. (2016) used electrodermal measures obtained from one wrist using
empatica (i.e., a smartwatch to measure different physiological signals like heart
rate and skin temperature) and tried to relate it to three aspects measured by a test
and self-reports. The three aspects are: collaborative will measured by a self-report
questionnaire before the collaboration task; collaborative product measured by a
self-report questionnaire after the collaboration task; and dual learning gain meas-
ured by the difference between the posttest and pretest scores. If in a group the
direction of arousal pattern of electrodermal activation was synchronous among the
group members, then that group showed a good quality of collaboration measured
in terms of learning gain. Other uses of self-reports are in the form of a satisfaction
survey given to the participants involved in group work (Anastasiou and Ras, 2017;
Dierker et al., 2009) or some extra information related to the collaboration task
(like information about the self-perceived levels of rapport (Lubold and Pon-Barry,
2014)). The higher rapport between the group members results in a better quality of
collaboration.

Now, we summarize the indicator types discussed above (eye gaze, spatial, content,
and physiological). All the articles which use eye gaze as an indicator type to detect
collaboration quality conclude that the more often JVA occurs, the better is the
quality of collaboration. Some closed collaborative tasks which had predefined
specific mobility and position requirements in the room tracked the distance between
the group members. It was found that the lesser the distance between the members
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is, the better is the quality of collaboration. However, this was not consistent.

Summarizing the content indicator type, the content of the discussion during CC
gives rise to idea generation and it was found that if all group members equally
contribute to the number of ideas generated, then that group had a good quality of
collaboration. In some other works, the content of CC was dependent on the task
requirements and the closeness it has to the designed solution. This indicated the
quality of collaboration. Some CC tasks tracked the physiological signals and found
that if the patterns of the skin temperature of the group members are in sync then
those groups exhibit good collaboration quality.

Combined indicator types Some works (e.g., Martinez-Maldonado et al. (2013);
Worsley and Blikstein (2015); Kim et al. (2008)) used a combination of multiple
indicator types. For instance, Martinez-Maldonado et al. (2013) used a TUI, micro-
phone array, and Kinect to detect the indicators of CC. They performed a task with
two phases (i.e., brainstorming and linking). Then their aim was to differentiate
different collaboration levels by taking the help of a combination of the captured
audio and the physical tabletop actions like the touch on the TUI, frequency of open-
ing of different task-related information shown in the TUI. A microphone array was
used to capture the audio; for touch, they used Kinect to differentiate touch and
other interactive actions of each person. During the post hoc analysis, they found
that the more collaborative groups had higher verbal interactions as compared to
the less collaborative groups during the brainstorming phase. They also exhibited
less concurrency and parallel work. Additionally, the more collaborative group also
had more verbal responses after someone spoke.

Worsley and Blikstein (2015) used human annotations, speech, electrodermal activ-
ation (EDA) data, and gestures to differentiate student learning strategies while
working in groups. The groups were assigned to two different conditions: principle-
based reasoning and example-based reasoning. They found that students in the
principle-based reasoning condition showed more flow (i.e., near or below aver-
age audio, hand/wrist movement, and electrodermal activation) and action (i.e.,
above average hand/wrist movement) behavior compared to their counterparts in
the example-based reasoning group; flow behavior also positively correlated with
learning (i.e., the outcome of collaboration).

Kim et al. (2008) used a sociometric badge (i.e., an electronic sensing device worn
around the neck that can collect and analyze social dynamics), which acted as a
meeting mediator to capture audio and postures during meetings of four members in
one group. This badge bridged the gap of dominance and increased the equality of
participation among the group members using real-time feedback on their personal
mobile phones. Dominance was primarily measured by the total speaking time and
equality of turn taking of the group members. If these are more or less equal then
there is less dominance and the quality of collaboration is good. However, the use of
more indicator types may not always help in maximizing the CC detection potential,
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rather can be a requirement of that particular scenario (Ahonen et al., 2018).

Indexes
Indexes are the high-level quality markers of collaboration. They can act as a proxy
to understand, measure, and predict collaboration quality. They are composed
by aggregating the low-level indicators of collaboration such as pointing, head
orientation, hand movement, eye gaze, etc. Table 2.2 shows the overview of the
indexes that have been detected practically from different indicators of CC.

Synchrony It means a situation where two or more group members are in sync
with each other based on some criteria. For example, if two members in a group are
speaking at different amplitude but exhibiting the same pattern of their speech (e.g.,
the rise and fall of the pitch of both members are similar to each other) then they
are showing a high level of synchrony (Lubold and Pon-Barry, 2014). Synchrony
has been detected using audio indicator type (Lubold and Pon-Barry, 2014; Nakano
et al., 2015) and writing indicator type (Nakano et al., 2015). Lubold and Pon-Barry
(2014) found a positive correlation between synchrony and rapport (generated by
comparing perceptual rapport from annotators and self-reported rapport) during
collaborative interactions. A good rapport between group members can enhance
the collaboration (Chapman et al., 2005). Nakano et al. (2015) used writing (i.e.,
timestamped duration of writing notes or not writing obtained from the pressure
and contact features of a digital pen) as an indicator type to detect synchrony. They
found different participation styles like passive participation, receptive participation,
conversation management, and proactive participation among the group members
using binary (i.e., present or absent) behavior labels obtained from writing and gaze
indicator type (e.g., group member x is gazing at group member y, group member
x is gazing at group member y’s note, group member x is writing a note). The
co-occurrence patterns (i.e., number of times one or more behaviors occur in a time
window) of these behaviors can be used to predict the participation styles during
collaboration. Participation styles change during a collaborative task because of role
swapping to promote positive interdependence leading to effective collaboration
(Soller, 2001). Similarly, synchrony can also be defined using nonverbal indicators
such as activity during group work (i.e., all members in the group are either active,
semiactive, or in passive posture (Cukurova et al., 2018)). Synchrony was detected
there by using number coded activity indexes (i.e., 2 for active, 1 for semiactive and 0
for passive) derived from different indicators like hand position and head orientation
(Cukurova et al., 2017a, 2018, 2017b). They designed a task in which each group
member was interacting with an object in a group. The group members are said to be
in synchrony when all the members are in the same state (i.e., all active, semiactive
and passive). Here the valence of synchrony was determined based on whether the
synchrony is positive because of all active group members or negative due to all
passive ones. It was found that groups with high competence university students’ (as
assessed by expert teachers) had more instances of positive synchrony during CC. So,
the groups that showed higher instances of active or positive synchrony had better
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Table 2.2 Overview of Studies on Practically Detected Collaboration Indexes and Indicators

Indexesa Indicator
types

Indicators References

Synchrony ⇑

Audio rise and fall of aver-
age pitch, intensity

Lubold and Pon-Barry
(2014)

rise and fall of aver-
age amplitude

Nakano et al. (2015),
Spikol et al. (2017b)

body position, lean-
ing forward

Grover et al. (2016)

Posture relaxed or active
body posture

Schneider and
Blikstein (2015)

head direction Cukurova et al.
(2017a), Cukurova
et al. (2018)

pointing Barthelmess et al.
(2005)

hand movement Spikol et al. (2017b)
Gesture using both hands Schneider and

Blikstein (2015)
hand position Cukurova et al.

(2017a), Cukurova
et al. (2018)

Eye gaze gaze at speaker,
non-speaker/note

Nakano et al. (2015)

joint visual atten-
tion (JVA)

Dierker et al. (2009),
Li et al. (2010),
Schneider and Pea
(2014a), Schneider
and Pea (2015),
Andrist et al. (2018)

Writing presence or absence
of writing

Nakano et al. (2015)

Physiological electrodermal activ-
ation (EDA)

Dich et al. (2018),
Pijeira-Díaz et al.
(2019), Elkins et al.
(2009), Starr et al.
(2018)

heart rate Henning et al. (2009),
Henning et al. (2001)
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Indexesa Indicator
types

Indicators References

Equality ⇑

Audio jitter Lubold and Pon-
Barry (2014)

total speak-
ing time

Kim et al. (2008),
Bergstrom and
Karahalios (2007),
Bachour et al.
(2010), Praharaj
et al. (2018b)

Posture body move-
ment, sitting,
walking

Kim et al. (2008)

head direc-
tion

Cukurova et al.
(2018), Cukurova
et al. (2017b)

Gesture all types (i.e.,
pointing,
nodding)

Kim et al. (2008)

hand interac-
tions

Cukurova et al.
(2018), Cukurova
et al. (2017b)

Content identifying
patterns
between
data

Coopey et al. (2014)

number of
ideas and
questions

Kim et al. (2008)

Writing proportion of
participation
in database
modelling

Granda et al. (2015)

Individual Accountability ∗ Posture head direc-
tion

Cukurova et al.
(2018), Cukurova
et al. (2017a)

Gesture hand posi-
tion

Cukurova et al.
(2018), Cukurova
et al. (2017a)

Intra-individual Variability ⇓ Posture head direc-
tion

Cukurova et al.
(2018), Cukurova
et al. (2017b)

Gesture hand posi-
tion

Cukurova et al.
(2018), Cukurova
et al. (2017b)

Information Pooling ⇑ Content web search Hashida et al. (2013)
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Indexesa Indicator
types

Indicators References

Mutual Understanding ⇑

Audio dialogues,
verbal dis-
course,
statements,
questions

Rodríguez et al.
(2017), Abdu (2015),
Fischer et al. (2002),
Dornfeld et al.
(2017), McBride
et al. (2017), Johans-
son et al. (2011)

Content task related
content,
knowledge
construction,
quantitat-
ive and
conceptual
discourse,
idea flow

Abdu (2015), Fischer
et al. (2002), Dorn-
feld et al. (2017),
McBride et al.
(2017), Martinez-
Maldonado et al.
(2015b), Fake et al.
(2017), Scherr and
Hammer (2009),
Oshima et al. (2017),
Thompson et al.
(2013)

Gesture touch actions
on tabletop,
hand move-
ment

Martinez-
Maldonado et al.
(2015a), Johansson
et al. (2011)

Posture head orienta-
tion

Stiefelhagen and Zhu
(2002)

Eye gaze eye gaze on
peers, shared
devices

Martinez-
Maldonado et al.
(2015b)

Spatial position in
the room

Martinez-
Maldonado et al.
(2015b)

Reciprocal Interaction ⇑
Gesture hand move-

ment on tab-
letop

Wise et al. (2017)

Content explanation,
initiation
and argu-
ments

Wise et al. (2017)

aIndexes report the aggregated collaboration indicators and indicator types report the cluster of
similar collaboration indicators. ⇑ denotes that if the value of the index is high then the quality of the
collaboration is better and vice versa, and ⇓ denotes that if the value of the index is low then the CC
quality is better and vice versa. ∗ denotes that the index’s role in determining CC quality is unclear.
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quality of collaboration. Other indicator types like eye gaze (Schneider and Pea,
2013) (i.e., JVA or synchronization in eye gaze) have helped to detect synchrony
and the findings suggest that it can help in the detection of effective collaboration
whereas synchrony may not reflect collaboration in some indicator types like posture
(Schneider and Blikstein, 2015). Higher level of physiological synchrony of the skin
temperature as seen by Pijeira-Díaz et al. (2019); Dich et al. (2018) can also indicate
good quality of collaboration.

Equality In the work by Lubold and Pon-Barry (2014), they explained that if
the amplitude of the speakers is the same during their speech then they exhibit
equality (or convergence). Equality has been defined using nonverbal postures with
the help of statistical formulas like the sum of the squared difference between the
number of coded activities of each group members, standard deviation, and mean
difference (Cukurova et al., 2018). Some of these works (Cukurova et al., 2018,
2017b) computed equality among the group members by using different statistical
measures like the sum of the squared differences between the activity index (i.e.,
number coded based on the activity of the group members: 2 for active when a
member is interacting with an object; 1 for semiactive when a member is paying
attention to the peer but not interacting with the object; and 0 for passive in all
other situations) of each group member, the standard deviation of the activity index
among the group members and the average mean of the activity index among the
group members. The high competence groups (as detected by expert teachers) had
all group members with higher physical interaction with the object, in turn showing
higher equality for the group. Equality has also been detected using audio as an
indicator type (Bachour et al., 2010; Bergstrom and Karahalios, 2007). Here, they
used reflective visualization to show the group members the total speaking time of
their conversations. This helped them to regulate the equality of participation. So,
the over participators (i.e., the group members with a higher percentage of speaking
time in the group) reduced their speaking time and the under participators improved
their speaking time towards the end of the group session. The groups with higher
equality of participation showed better quality of collaboration as evaluated by a
posttest. Other examples of equality index computation are by Kim et al. (2008)
who used a meeting mediator (or a sociometric badge based real-time feedback) to
reduce the gap between dominant and nondominant members during collaborative
brainstorming and other tasks. As per their hypothesis, groups who used the meeting
mediator had balanced participation and became more collaborative. Tausch et al.
(2014) used human observers to monitor the group conversations during collabor-
ative brainstorming. These observers helped to maintain the equality of number
of ideas generated by the members by moderating a metaphorical feedback that
resembled a groupgarden. The groups with had higher equality of participation
measured in terms of ideas generated by each member had also better quality of
collaboration.
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Individual accountability (IA) IA has been used as another index to measure
collaboration quality. It means that at least one of the members in the group is
paying attention to the activity of other members; there is not a single member who
ignores the activity of other members (Cukurova et al., 2018, 2017a). They used
the activity indexes as marked by numbered coding (i.e., 0, 1, and 2 as described
earlier) to measure individual accountability. Conceptually, it means that every
member in the group is undertaking their share of work and also acknowledging the
contribution of the other members. In these works (Cukurova et al., 2018, 2017a),
IA was less effective to predict the quality of CPS even though they had a hypothesis
that the groups with a higher quality of collaboration will have a higher value of
IA. According to the authors IA might not be properly coded to capture the complex
collaborative processes in CPS scenario.

Intra-indivdual variability (IVA) IVA for a particular group member is detected
by the difference in behavioral activity (i.e., number coded as 2 for active, 1 for
semiactive, and 0 for passive) of the member in two sequential time windows
(Cukurova et al., 2018). High competence CPS groups (as rated by expert teachers)
had a similar frequency of changes in their physical interactions as compared to the
low competence groups. Therefore, in other words, a lower value of IVA indicated
that the quality of collaboration for the group was good. This may be attributed to a
higher shared understanding between the group members (Barkley et al., 2014).

Information pooling It is the accumulation of information measured from the
content of the conversation in a particular CC task (Hashida et al., 2013). In this
study, the group members try to gather as much information as possible regarding
the shared web search to move towards the collaborative web search. So, they help
each other out to do the common objective of web search. The groups have a good
quality of collaboration if they are good in information pooling.

Mutual understanding It denotes the level of understanding between the group
members which is detected mostly by the content of their conversation from the
audio indicator type (Rodríguez et al., 2017; Abdu, 2015). Other indicator types
like posture, gesture, eye gaze and spatial also help in the detection of mutual
understanding based on how each member makes eye contact with the others, the
comfort level among them based on their positioning and distance in the group and
how they back-channel their conversations (Martinez-Maldonado et al., 2015a,b).
Higher level of mutual understanding indicates higher quality of collaboration.

Reciprocal interaction It is measured by the gesture and content indicator type
which denotes how group members reciprocate to each other during the CC. This
can be a reply given to an initiated question or defending one’s position with suitable
arguments within the group. The groups which had group members with preassigned
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roles performed better and had better reciprocal interaction as compared to the
groups without any preassigned roles.

To summarize the results, we found different indicators of collaboration which were
grouped into different indicator types. Then these indicators were processed and
aggregated to form the indexes in some works which form the high-level collaboration
quality definition. Some group-level indicators in the audio indicator type such as
total speaking time, the ratio of the speaking time duration of the most talkative
member, and the least talkative member along with the individual speaker-based
indicators such as spectral, temporal audio features are indicative of collaboration
quality. But, the same is not true for the individual speaker-based indicators alone.
Other group level indicators like overlapped speech, interruptions are also indicative
of the CC quality; the higher their number, the better is the quality. Duration of
speaker and listener eye gaze combined with total speaking time was not useful to
detect CC quality. But, JVA measured from eye gaze was useful and indicated that
the quality of collaboration is good if there is a higher occurrence of JVA. Similarly,
joint posture movements were not indicative of collaboration quality, rather specific
postures like active posture indicated better collaboration quality. Similarly, specific
gestures such as using both hands indicated better quality of CC. Joint arousal
measured from the EDA in physiological indicator type was indicative of CC quality;
higher the occurrence, the better is the quality.

We found that the detection mechanisms for these indicators varied from human-
based, sensor-based to hybrid event detection. Furthermore, different practically
detected indexes, that is, synchrony, equality, individual accountability, IVA, mutual
understanding, information pooling, and reciprocal interaction have been aggregated
from a different set of indicator types. For instance, synchrony has been detected
using audio, posture, gesture, eye gaze, and writing as indicator types. However,
synchrony has not been detected using the content indicator type. It is because
detecting synchrony from the CC task content requires understanding the semantics
and intent of what is spoken. It is difficult to detect that automatically and laborious
for human observers to detect it in a post hoc manner. Unlike these indexes, equality
has been detected from content indicator type. Similarly, other indexes have been
detected from selected indicator types as seen in Table 2.2. Thus, we need to
understand in depth what the different collaboration indicators and their sources
in different scenarios are before deciding on the design of the suitable conceptual
framework model.

2.3.2 Scenario-Driven Prioritization of CC
To map the low-level indicators and the balancing between these indicators on the
index level into useful feedback for collaboration, we analyzed the literature on
different forms of collaboration and classified these according to the collaboration
targets. We found 13 different scenarios of CC: problem-solving, planning, learning,
programming, database design, healthcare simulation, gaming, engineering design,
design, concept mapping, brainstorming, meetings, and browsing. Table 2.3 gives an
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Table 2.3 Overview of Collaboration Scenarios With the Indicator Types, Indicators, Indexes1

and Their Valence2 With Reference to Collaboration Quality

Scenarios Indicator
types

Indicators, Indexes and Valence References

synchrony in rise and fall of amplitude
⇑, synchrony in rise and fall of pitch ⇑,
number of syllables used per second ⇓,
pause duration ⇑

Nakano et al. (2015), Lubold and
Pon-Barry (2014), Scherer et al.
(2012)

verbal discourse such as statement,
questions, numbers, context of prob-
lem, dialogues ∗, misconception in
problem solving ∗

Ochoa et al. (2013), Thompson
et al. (2014), Rodríguez et al.
(2017), Stewart et al. (2018),
Abdu (2015)

Audio nonverbal audio cues such as silence
∗, number and duration of overlap of
speech ⇑, uninterrupted speech length
∗, frequency of turn taking ⇑, equal-
ity of total speaking time ⇑, equality of
total speaking time and turn taking ⇑

Luz (2013), Oviatt et al. (2015),
Viswanathan and VanLehn
(2017), Kim et al. (2015),
Bachour et al. (2010), Kim et al.
(2008)

linguistic features: pronouns, prepos-
itions ∗, number of anaphoras (any-
body, anyone, all, another) used ⇑

Schneider and Pea (2014a),
Schneider and Pea (2015)

Problem-
solving

Writing handwriting signal ∗, area used to
sketch geometric representation ⇑, di-
gital pen stroke, writing speed and pres-
sure ∗

Zhou et al. (2014), Scherer et al.
(2012), Ochoa et al. (2013)

Spatial mobility in the room ∗, distance
between individuals ∗

Healion et al. (2017), Schneider
and Blikstein (2015)

Eye gaze JVA (synchrony) ⇑ Schneider and Pea (2014a),
Schneider and Pea (2015)

Gesture using both hands ⇑, touch actions on
tabletop ∗

Schneider and Blikstein (2015),
Isenberg et al. (2010), Ochoa et al.
(2013)

Posture synchrony in active or relaxed body pos-
ture ∗, specific body movements ∗

Schneider and Blikstein (2015),
Kim et al. (2008), Ochoa et al.
(2013)

Content task related ⇑, tabletop content logs
matching near to the solution ⇑,
type of contribution (i.e., symmetric⇑,
asymmetric⇓ or individual⇓)

Abdu (2015), Olsen and Finkel-
stein (2017), Thompson et al.
(2014), Anastasiou and Ras
(2017), Viswanathan and Van-
Lehn (2017), Isenberg et al.
(2010)

Self-
reports

closeness in group ⇑, tools used for CC
∗

Isenberg et al. (2010), Anastasiou
and Ras (2017)

Content equality between patterns of data ⇑,
mutual understanding from content
logs ⇑, topic of discussion ⇑, idea flow
∗, task related content ⇑

Coopey et al. (2014), Fischer et al.
(2002), Dornfeld et al. (2017),
McBride et al. (2017), Martinez-
Maldonado et al. (2015b), Fake
et al. (2017), Flood et al. (2015)

Eye gaze JVA (synchrony) ⇑, eye gaze on peers
∗, eye gaze on shared devices ∗

Schneider et al. (2015), Martinez-
Maldonado et al. (2015b), Flood
et al. (2015)

Design Audio small group talk ∗, dialogues ∗, verbal
discourse ∗

Wake et al. (2015), Dornfeld
et al. (2017), Emara et al. (2017),
McBride et al. (2017), Fake et al.
(2017), Flood et al. (2015)

Gesture task related touch actions on the TUI⇑,
facial expression ⇑, prompts, patterns
of gesture ∗

Evans et al. (2016), Malmberg
et al. (2019), Emara et al. (2017)

Physiological simultaneous arousal by electrodermal
activation (EDA) ⇓

Malmberg et al. (2019)

Posture body motion ∗ Flood et al. (2015)
Spatial space usage ∗ Martinez-Maldonado et al.

(2015b)
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Scenarios Indicator
types

Indicators, Indexes and Valence References

Audio speech intonation ∗, initiator or
listener, verbal discourse ∗

Scherr and Hammer (2009), Dav-
idsen and Ryberg (2017), An-
drist et al. (2018), Wong et al.
(2011), Thompson et al. (2013),
Oshima et al. (2017), Hardy and
White (2015), Andrade (2015),
Andrade-Lotero et al. (2013),
Martin et al. (2015)

Eye gaze gaze at peers, JVA (synchrony) ⇑ Scherr and Hammer (2009), An-
drist et al. (2018), Davidsen and
Ryberg (2017)

Gesture average hand movement, number
of pointing ⇑

Scherr and Hammer (2009),
Davidsen and Ryberg (2017),
Thompson et al. (2013)

Learning Physiological synchrony in arousal by electro-
dermal activation ⇑

Pijeira-Díaz et al. (2019)

Posture standing or sitting, bending body
∗

Davidsen and Ryberg (2017),
Scherr and Hammer (2009)

Content topic of discussion related to
the task ⇑, mutual understanding
from knowledge construction ⇑

Scherr and Hammer (2009), Dav-
idsen and Ryberg (2017), Wong
et al. (2011), Manske et al.
(2015), Thompson et al. (2013),
Oshima et al. (2017), Hardy and
White (2015), Andrade (2015),
Andrade-Lotero et al. (2013),
Martin et al. (2015)

distance between group members
∗

Schneider and Blikstein (2015)

Spatial distance between group members
⇓

Cukurova et al. (2017b), Spikol
et al. (2017a), Cukurova et al.
(2017a), Cukurova et al. (2018),
Spikol et al. (2017b), Spikol et al.
(2018b)

Physiological near or below average arousal by
EDA ⇑

Worsley and Blikstein (2015),
Worsley and Blikstein (2018)

Engineering
design

Gesture synchrony in hand movement,
wrist movement ⇑, synchrony in
pointing ⇑

Schneider and Blikstein (2015),
Cukurova et al. (2017b), Spikol
et al. (2017a), Cukurova et al.
(2017a), Cukurova et al. (2018),
Spikol et al. (2017b), Worsley
and Blikstein (2015), Spikol et al.
(2018b), Worsley and Blikstein
(2018)

Posture synchrony in posture ∗, equality
of posture ⇑, synchrony in pos-
ture ⇑, Intra-individual variability
of active or passive posture ⇓, In-
dividual accountability of active or
passive posture ∗

Schneider and Blikstein (2015),
Cukurova et al. (2017b), Spikol
et al. (2017a), Cukurova et al.
(2017a), Cukurova et al. (2018),
Spikol et al. (2017b), Spikol et al.
(2018b)

Audio amplitude ∗ Spikol et al. (2017b), Spikol et al.
(2018b)
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Scenarios Indicator
types

Indicators, Indexes and Valence References

equality of total speaking time ⇑, aver-
age speech segment length ∗, presence
of speech ∗

Terken and Sturm (2010),
Kim et al. (2008), Bergstrom
and Karahalios (2007), Pra-
haraj et al. (2018b), Bhat-
tacharya et al. (2018), Hen-
ning et al. (2009)

Audio prosody such as average amplitude and
average energy variation in speech ∗

Kim et al. (2008), Bergstrom
and Karahalios (2007)

Meetings Content equality of number of ideas ⇑, content
logs matching solution ⇑

Kim et al. (2008), Martinez-
Maldonado et al. (2015a)

Eye gaze speaker and listener eye gaze ∗ Terken and Sturm (2010),
Stiefelhagen and Zhu (2002)

Gesture equality of average gesture variation ⇑ Kim et al. (2008)
Posture mutual understanding from head orient-

ation ⇑
Stiefelhagen and Zhu
(2002), Bhattacharya et al.
(2018)

Self-
reports

self-report on dominance ∗ Kim et al. (2008)

Physiological synchrony in heart rate ⇑ Henning et al. (2009)
Content equality of number of ideas ⇑, equality

of total speaking time ⇑, TUI content
logs matching the solution ⇑

Tausch et al. (2014), Kim
et al. (2008), Martinez-
Maldonado et al. (2013)

Brainstorming Gesture mutual understanding from touch ac-
tions with the TUI ⇑

Martinez-Maldonado
et al. (2015a), Martinez-
Maldonado et al. (2013)

Posture equality of body movement like sitting
and walking ⇑

Kim et al. (2008)

Audio nonverbal audio features like presence
or absence, length, verbal interactions
∗

Martinez-Maldonado et al.
(2015a), Kim et al. (2008),
Martinez-Maldonado et al.
(2013)

Healthcare
simulation

Spatial correct mobility and positioning in the
room around the patient manikin ⇑

Martinez-Maldonado
et al. (2017a), Martinez-
Maldonado et al. (2017b)

Browsing Content content of search (information pooling)
⇑

Hashida et al. (2013)

Eye gaze JVA (synchrony) ⇑ Dierker et al. (2009), Li et al.
(2010)

Gesture reciprocal interaction by hand move-
ment on tabletop ⇑

Wise et al. (2017)

Gaming Posture body movement ∗ Wise et al. (2017)
Spatial space usage around the tabletop ∗ Wise et al. (2017)
Audio verbal discourse ∗ Johansson et al. (2011)
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Scenarios Indicator
types

Indicators, Indexes and
Valence

References

Physiological synchrony in direction of
arousal ⇑

Pijeira-Díaz et al. (2016)

Planning Gesture synchrony in pointing ⇑ Barthelmess et al. (2005)
Content content of the task like

planning, editing, modify-
ing ∗

Harrer (2013)

Physiological synchrony in arousal from
EDA ⇑

Ahonen et al. (2018),
Dich et al. (2018), Starr
et al. (2018)

Spatial proximity ∗ Reilly et al. (2018)
Programming Gesture grabbing mouse from the

partner ∗
Grover et al. (2016)

Posture body position, leaning for-
ward ∗, spending more
time in iterating (actively
involved in programming
a solution) pose as com-
pared to planning, tinker-
ing ⇑

Grover et al. (2016), Re-
illy et al. (2018)

Gesture number of touch actions
on the interactive surface
∗

Wong-Villacrés et al.
(2016), Echeverria et al.
(2017), Granda et al.
(2015)

Database
design

Content content logs from TUI
matching the correctness
of solution ⇑

Wong-Villacrés et al.
(2016), Echeverria et al.
(2017), Granda et al.
(2015)

Self-
reports

evaluation of own and
peers’ group work skills ∗

Wong-Villacrés et al.
(2016), Echeverria et al.
(2017), Granda et al.
(2015)

Content content logs from TUI
matching the correctness
of solution ⇑

Martinez-Maldonado et al.
(2015a)

Concept
mapping

Audio verbal interactions, verbal
response to peers ⇑

Martinez-Maldonado et al.
(2013), Martinez et al.
(2011)

Gesture concurrent and parallel
touch actions with the TUI
⇓

Martinez-Maldonado et al.
(2013), Martinez et al.
(2011)

1 marked in italics when practically detected. 2 positive ⇑, negative ⇓, unclear or no effect ∗.
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overview of the studies on different scenarios of collaboration and relevant indicators
and indicator types found in those scenarios in detail. In all these scenarios the
group size ranged from 2–4 members. Problem-solving includes scenarios of solving
a complex problem like maths or physics problems or solving a puzzle. Engineering
design deals with designing a prototype while design can cover multiple tasks such as
designing coursework, a website, a course, or a game. Collaborative learning scenario
specifically implies that the goal of the task is learning. Meetings are gatherings
of members to discuss and brainstorm about a task. Thus, there is an overlap
between brainstorming and meetings as some meeting scenarios had brainstorming
as a sub-scenario phase. Some other scenarios also contain overlapping articles
because some collaboration scenarios include other scenarios as a part of different
subphases in that scenario. For instance, Kim et al. (2008) had problem solving
as the scenario which had two different subphases of brainstorming and meetings.
This means that the scenario separation is solely based on the end collaboration
target where each scenario need not be mutually exclusive but rather serve as a
guide to distinguish the indicators of collaboration based on the collaboration end
goal. Gaming mostly involves dyads (or pairs) who interact with their partner on a
shared artifact. Planning is a session where group members plan a diet plan or some
other day-to-day planning activity is undertaken. Database design uses interactive
tabletops to design the database schemas. Concept mapping is the linking of similar
concepts. Healthcare simulation involves surgeons or nurses during group operations
or medical practice training. Programming involves working on code mostly in
dyads. Browsing refers to a group who share information with each other to browse
a website or other information.

Contextualization of different indicators
Considering the indicators detected in different scenarios, there are two broad
categories of indicators. First, the verbal indicators grouped in content indicator
type. Second, the nonverbal indicators grouped in gesture, posture, spatial, and
eye gaze indicator type. The scenarios such as problem-solving, design, learning,
meetings, brainstorming, planning, database design, concept mapping, and browsing
use both the verbal and nonverbal category of indicator type to detect collaboration
quality. But, the other nonverbal-heavy scenarios such as engineering design, gaming,
programming, and healthcare simulation are action-based or require considerable
interactions with a shared artifact along with the interaction among group members.
So, depending on the goal of the task, context (such as the use of specialized
furniture, TUI, other shared artifacts like a prototype, or patient manikins in case
of medical simulation), the type of indicators detected changes. The relevance of
these indicator types can be peeled further to determine whether they are always
dependent on the context or they are independent of the context. For example, eye
gaze indicator type for CC quality detection during a meeting scenario of a 3–4-
member group is computed as the time of listener and speaker eye gaze while same
eye gaze during a problem-solving, design task is computed as the JVA. Although
speaker and listener eye gaze is not a good indicator of collaboration quality (Terken
and Sturm, 2010), higher instances of synchrony in eye gaze (or JVA) is indicative
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of the better quality of CC (Dierker et al., 2009; Schneider et al., 2015). So, eye
gaze is dependent on the context. However, synchrony in posture may not be a good
predictor of collaboration quality (Schneider and Blikstein, 2015).

Besides, less distance between the collaborating group members means that they
have a higher level of comfort and the quality of collaboration is better (Spikol et al.,
2017b,a) for that group. However, this was that not consistent with all the previous
works (Schneider and Blikstein, 2015). Schneider and Blikstein (2015) did not find
any significant correlation between the group members’ distance and collaboration
quality.

Audio is a commonly occurring indicator type across most of the scenarios. Total
speaking time (Bachour et al., 2010; Kim et al., 2008), interruptions (Oviatt et al.,
2015), and overlap in the speech (Dong et al., 2009; Zhou et al., 2014; Çetin and
Shriberg, 2006) were good predictors of collaboration quality. Some indexes such
as synchrony of rise and fall in pitch, and equality of the amplitude are directly
proportional to the quality of CC (Lubold and Pon-Barry, 2014). Silence has been
used as a feature to train a machine learning model to detect the CC quality (Luz,
2013) in problem-solving. But, a qualitative analysis of these indicators was not
done by the authors. One can interpret silence as a thinking or reflection stage when
group members start thinking about the problem. Thus, it is difficult to inform the
practitioners as to what the occurrence of single or multiple instances of silence can
mean about the quality of CC. However, a balanced speaking time is desirable during
meetings (Terken and Sturm, 2010; Kim et al., 2008) when every group member
needs to speak in a discussion or contribute some ideas.

Besides, gestures detected by the hand interactions with the TUI showed that groups
showed better quality of collaboration when they were focused on a particular
purpose and had more occurrence of both task unrelated touches and unrelated
overlapping sequences (Evans et al., 2016). It meant that they are working col-
laboratively towards the task objective instead of working individually. In general
groups where members used both their hands (Schneider and Blikstein, 2015) and
had near average hand movement (Worsley and Blikstein, 2015) showed better
quality of collaboration. So, the gesture is dependent on the context. For example, a
planning scenario (Barthelmess et al., 2005) has pointing gestures as an indicator
whose higher number indicates better collaboration quality while grabbing mouse
from the partner combined with active posture in case of programming scenario
(Grover et al., 2016) is a sign of good collaboration. The valence of individual
indicators’ contribution for detecting CC quality was not discussed because it was
operationalized using a machine learning classifier without any qualitative analysis.

Groups whose members’ direction of arousal pattern of electrodermal activation
was synchronous showed the good quality of collaboration measured in terms of
learning gain (Pijeira-Díaz et al., 2016). However, it was not true all the time (Pijeira-
Díaz et al., 2019). During collaborative learning, using electrodermal activation
(EDA) in a group of 3 people collaborating, it was found that instances of arousal
and relaxed states among the group members (or directional agreement) are not
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reached at the same time window (Pijeira-Díaz et al., 2019) even though they have
a good collaboration quality. This directional agreement is context-independent.
However, on contextualizing it with other modalities like the video data, it was
found that the group members presented the most negative facial expressions during
the simultaneous arousal episodes (Malmberg et al., 2019). Simultaneous arousal
episodes (as measured by the EDA) occurred during different phases of CC. The
quality of collaboration was poor during most of the instances of simultaneous
arousal with a low level of interactions in the group. According to them (Malmberg
et al., 2019), this arousal can be because of rising stress levels or confusion levels
leading to unproductive collaboration.

As mentioned earlier, different tools and methods have been used for coding and
analysis of these indicators. Some scenarios like brainstorming favor the use of
human observers (or a human-based set up only) for detecting some of the indicators
of CC while other scenarios like engineering design are better suited for the use
of a sensor-based set up only or a hybrid set up for detecting CC indicators. Some
scenarios such as programming, planning, and database design do not use indicators
from audio indicator type while most other scenarios use indicators from audio
indicator type. Connecting these indicators and indicator types in different scenarios
with the sensors in Table 2.1, it is clear that these indicators define the type of set
up needed for collaboration detection. In addition, these indicators vary a lot in
different scenarios because of the differing goals and parameters.

Fundamental parameters during collaboration
To understand the scenarios further, we need to take into account the fundamental
parameters of CC. The parameters of collaboration are primary aspects such as team
composition (e.g., experts, initiators, or roles of being initiators), the behavior of
team members (e.g., dominance, coupling, or conflict), types of interaction (e.g.,
active or passive, or critique), behavior during collaboration (e.g., knowledge co-
construction, reflection, coherence, misconception, or uncertainty). To elaborate the
parameters, dominance (Kim et al., 2008; Schneider and Blikstein, 2015) includes the
dominance and leadership parameter. The Coupling (Olsen and Finkelstein, 2017;
Lubold and Pon-Barry, 2014) includes the comfort level, coupling, coordination, and
rapport between the group members. Coherence (Schneider and Pea, 2014a, 2015)
includes verbal coherence where group members build upon each other‚Äôs ideas
and verbal-discourse coherence. Engagement (Cukurova et al., 2017b, 2018; Spikol
et al., 2017b) includes engagement, participation, and interaction. Learning strategy
(Worsley and Blikstein, 2015, 2018) reports the strategy adopted by the group during
CC. Heterogeneity (Manske et al., 2015; Flood et al., 2015; Wong et al., 2011) refers
to the difference in previous knowledge or the difference in capabilities among
the group members. Fischer (2000); Fischer and Ostwald (2005) proposed that
heterogeneous collaborating teams possess a symmetry of ignorance (Rittel, 1984)
which makes them more interesting, wherein neither team possesses the full breadth
of knowledge to solve the problem independently, and thus collaborating with each
other can help to resolve the problem. Roles (another parameter of CC) (Wise et al.,
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2015; Martin et al., 2015), when self-assigned, evokes a sense of responsibility within
the group that are designed to facilitate group progress towards a goal (Hare, 1994).
Some roles are preassigned and some emerge during collaboration (Strijbos and
Weinberger, 2010). Moving on to another parameter, misconception, it arises when
group members share a common understanding among themselves without any
refutation and reflection (Abdu, 2015). Uncertainty is more common among group
members with less mutual understanding (Rodríguez et al., 2017). During design
scenarios of CC, critique (McBride et al., 2017) is a parameter that surfaces for the
first time where individual group members criticize each other’s work to develop a
shared understanding or to reach consensus. Knowledge co-construction (Scherr and
Hammer, 2009; Oshima et al., 2017; Thompson et al., 2013) is sharing each other’s
ideas and using them to build the shared understanding of the situation or the task
at hand.

2.3.3 Confluence of Both Approaches to Assess Quality of Col-
laboration

We focused on modeling the conceptual framework for the most dominant scenario
found: CPS. We plan to model the quality of CC in some of the other scenarios in
the future, but proceed for this one at the moment. It is because of the well-defined
goals and objectives in this scenario based on the number of studies analyzed. Based
on the scenarios we found for ideal collaboration and its parameters like team
composition (such as experts, initiators), the behavior of team members (such as
dominance, coupling), types of interaction (such as active or passive), we mapped
these parameters onto the indicator types and indexes. This mapping defines a
conceptual framework for the chosen CPS scenario. Table 2.4 gives an overview of
this mapping.

Now, we drill down further into the CPS scenario in Table 2.4. If we consider one
parameter dominance when taking into account audio as an indicator type, it can
be detected by using the equality index in the group. Contrary to that, the same
parameter can be mapped onto synchrony as a measurable index when posture
is considered. In this case, as shown in the table with an upward or downward
arrow (indicating the direct or inverse relationship with indexes and collaboration
quality), lower dominance means higher synchrony or higher equality resulting in
better collaboration quality. Similarly, less uncertainty among group members can
be measured by better mutual understanding in the group resulting in a higher
quality of collaboration. So, the fundamental characteristics of the group in one
scenario (i.e., the parameters) are made visible by the proxy measurable property of
the aggregated indicators (i.e., the indexes) to give an idea about the collaboration
quality.

To summarize, first, in our review, we started with a bottom-up analysis. In that,
we grouped different articles based on the sensors used, indicators of collaboration
derived from these sensors, indexes formed by aggregating these indicators, and
finally detecting the quality of collaboration. Next, we formed a scenario-driven
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Table 2.4 Modeling a CC Scenario—Collaborative Problem-Solving

Parametersa Indicator
types

Indexesb References

Expertise ⇑
Audio Dialogue management∗ Luz (2013), Oviatt et al. (2015),

Ochoa et al. (2013)
Posture Synchrony∗, IA∗ Ochoa et al. (2013)
Gesture Synchrony∗, IA∗ Ochoa et al. (2013)
Writing Synchrony∗, IA∗ Zhou et al. (2014), Ochoa et al.

(2013)

Dominance ⇓

Audio Equality Kim et al. (2008), Bachour et al.
(2010)

Posture Synchrony, Equality Schneider and Blikstein (2015),
Kim et al. (2008)

Gesture Synchrony, Equality Schneider and Blikstein (2015),
Kim et al. (2008)

Writing Synchrony∗, Equality∗ Zhou et al. (2014)
Self-reports Equality Kim et al. (2008)

Coupling ⇑

Audio Synchrony, Equality Lubold and Pon-Barry (2014),
Olsen and Finkelstein (2017)

Posture Equality Schneider and Blikstein (2015)
Gesture Mutual understanding∗,

Synchrony
Isenberg et al. (2010), Schneider
and Blikstein (2015)

Content Mutual understanding∗,
Synchrony

Isenberg et al. (2010), Schneider
and Blikstein (2015)

Self-reports Mutual understanding∗ Isenberg et al. (2010)

Reflection ⇑
Self-reports Information pooling∗ Anastasiou and Ras (2017)
Audio Information pooling∗ Thompson et al. (2014)
Content Information pooling∗ Thompson et al. (2014)

Roles ⇑ Audio Mutual understanding∗,
Task division∗

Kim et al. (2015)

Coherence ⇑
Audio Reaching consensus∗ Schneider and Pea (2014a),

Schneider and Pea (2015),
Olsen and Finkelstein (2017)

Eye gaze Reaching consensus∗ Schneider and Pea (2014a),
Schneider and Pea (2015)

Content Reaching consensus∗ Olsen and Finkelstein (2017)
Uncertainty ⇓ Audio Mutual understanding Rodríguez et al. (2017)

Misconception ⇓ Audio Mutual understanding Abdu (2015)
Content Mutual understanding Abdu (2015)

Engagement ⇑

Audio Equality∗, Synchrony Bassiou et al. (2016),
Viswanathan and VanLehn
(2017), Nakano et al. (2015)

Posture Mutual understanding∗ Viswanathan and VanLehn
(2017)

Gesture Mutual understanding∗ Viswanathan and VanLehn
(2017)

Content Mutual understanding∗ Viswanathan and VanLehn
(2017)

Eye gaze Synchrony Nakano et al. (2015)
Writing Synchrony Nakano et al. (2015)
Spatial IVA∗ Healion et al. (2017)

a ⇑ denotes that if the value of the parameter is high then the quality of the collaboration is better and
vice versa, and ⇓ denotes that if the value of the parameter is low then the CC quality is better and vice
versa. bSome indexes reported here have been detected practically, while some indexes marked with a ∗
have been reported by us based on our understanding of indexes from the article by Meier et al. (2007)
and the practically detected ones.
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Figure 2.2 Confluence of both approaches of CC quality detection.

prioritization because of the differing goals of different types of CC scenarios, task
requirements, and fundamental group parameters (such as dominance and coupling).
From those scenarios, we mapped the parameters of CC onto the collaboration
indicators and indexes for each of these scenarios. Fig. 2.2 shows the confluence of
the analysis from both approaches. For the scope of the review, we restrict it to CPS
which was the dominant scenario with well-defined goals and objectives as found in
most articles. In CPS, if the group members are less dominant, then there is equality
of total speaking time among the group members and their participation is almost
equal, resulting in a good quality of collaboration (Kim et al., 2008; Bachour et al.,
2010).

2.4 Discussion
Regarding the first research question (“What collaboration indicators have been used
in research to understand the quality of CC?”), we have identified indicators for the
quality of collaboration on two different levels. In the first part, we have identified
categories of low-level sensor-based, human or hybrid events in collaboration that
have been observed in different studies. We have collected indicators of collabor-
ation that have been used in studies to identify relevant activities of users for the
collaboration quality. In the second part, we have started from high-level indexes
that have been used to identify collaboration quality in research. These indexes
are composed of one or more indicators obtained from multiple indicator types
and act as a proxy to detect the quality of the collaboration process. For instance,
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counting the number of ideas during a brainstorming scenario in CC is obtained
from the events grouped in the content indicator type; while a high-level process
definition, that is, equality of the number of ideas generated by each member in the
group, measures the quality of collaboration. Thus, the event–process conceptual
framework provides a holistic picture of the quality of collaboration observed during
CC using MMLA. This conceptualization is an essential foundation stone for building
different types of collaboration detection, monitoring, and prediction systems. We
find that some of the indicators like total speaking time (Bachour et al., 2010; Kim
et al., 2008), and number and duration of overlap of audio (Zhou et al., 2014)
are consistently indicative of collaboration quality across different studies but the
same is not true for other indicators such as distance between group members. The
distance between group members gives a mixed indication of the quality of CC; that
is, sometimes it is inversely proportional (Spikol et al., 2017a,b) or sometimes there
is no relation (Schneider and Blikstein, 2015) with CC quality. The comprehensive
overview of the indicators will help practitioners to choose the sensors and indicators
according to their set up. If they see that certain indicators (such as writing speed,
pressure from the digital pen, distance between group members, and space usage in
the room during group work) from past studies are not having any relation with CC
quality then they can focus on the indicators (such as total speaking time and JVA)
that worked in most settings in their preliminary experiments.

The operationalization of these indexes has suffered from multiple limitations. Some-
times it is challenging to code the indicators to compute the indexes (Cukurova et al.,
2018, 2017a) as in the case of individual accountability; thus failing to detect CC
quality. Another limitation is the use of machine learning approaches (Grover et al.,
2016; Luz, 2013; Stewart et al., 2018; Viswanathan and VanLehn, 2017) which
use one or more indicators to detect CC quality but fail to address the qualitative
aspect of these indicators. For example, silence and pause are good indicators of
collaboration combined with other indicators (Luz, 2013) but it is not clear if more
or less occurrence of silence in itself indicates anything about the quality of CC.
This tension between the transparency of the learning analytics models and the
accuracy was highlighted by Cukurova et al. (2020) and is still an open question.
Some machine learning models which are like a black box have higher accuracy
even though they are not transparent in terms of the role of each of the indicators of
CC. Moreover, we find that some indexes have been detected from certain indicator
types but not from others. For instance, synchrony has not been detected using the
content indicator type. This may be because of the difficulty involved in detecting
and analyzing the content of a discussion (or the semantic nature of the discussion
itself) during collaboration. This also highlights the importance of choosing the right
sensing mechanisms (or sensors) in the respective CC scenario. However, equality
has been easily detected using the content indicator type (number of ideas as an
indicator) as it is easier to measure a quantitative value (i.e., the number of ideas
generated by each member during collaboration). This brings to light the need for
scenario-driven prioritization and modeling.

Considering the second research question (“What is the impact of different scenario-
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based goals and parameters for CC on the relevance of the different indicators?”),
we found that the scenario of CC chosen has a huge impact on the indicators of
collaboration obtained. Some scenarios have a stark contrast in terms of the collabor-
ation indicators observed; for instance, collaborative brainstorming and collaborative
gaming. However, some scenarios have certain overlapping collaboration indicators;
for instance, collaborative design and collaborative concept mapping. This detection
of scenario-based indicator types is also dependent on the use of external objects
(e.g., patient manikins or shared artifacts). The scenarios which use these external
objects tend to be inclined towards nonverbal indicator types (such as engineering
design, gaming, and healthcare simulation). Moreover, some indicator types like eye
gaze, gesture, and audio are dependent on context while some others like physiolo-
gical ones are not. We find that higher occurrence of JVA (Schneider et al., 2015)
measured from the eye gaze indicates better CC quality while the same is not true
when individual eye gaze of speaker and listener is considered (Terken and Sturm,
2010). This indicates that CC is scenario-dependent and the collaboration indicators
can vary depending on the scenario, its goal, and context. But, when we consider
physiological indicator type then we find that instances of aroused and relaxed
states are context-independent and can be misleading unless contextualized with
other modalities like audio (Malmberg et al., 2019). Apart from the variation in the
scenarios, groups also vary in their fundamental parameters like team composition
(such as experts, initiators) or the behavior of team members (such as dominance,
rapport) in CC. To understand the impact of these parameters on the indicators of
collaboration in each scenario, we create a parameter-based listing and proceed for
modeling the conceptual framework in some of these scenarios.

We have modeled a conceptual framework for one of the dominant CC scenarios
which had well-defined task objectives (i.e., CPS). In this framework, we mapped the
CC parameters (such as behavior, composition, interaction, etc., of group members)
onto the indicator types and the indexes. We found that mapping the parameters
helped in furthering the semantic enrichment of the parameters, highlighting the
relevance of the indicators, and thereby defines a measurable complete set up. For
instance, dominance as a parameter of CC can be mapped onto audio as an indicator
type (taking into account the total speaking time indicator) to measure the equality
index in the group; whereas the same parameter can be mapped onto synchrony as a
measurable index when posture is considered. So, the same fundamental parameter,
that is, dominance in this case, can be measured differently depending on the
indicator type and the indexes considered for measuring the quality of collaboration.
If a group has higher dominance then specific members are more dominant than
others. This is measured by synchrony or equality. So, the higher the dominance,
the lesser is the synchrony or equality and the worse is the quality of collaboration.
Therefore, this conceptual framework is similar to a data dictionary which can act
as a roadmap for future research and evaluation on CC quality. It gives a high-level
overview of the current state to inform practitioners.

However, this mapping is incomplete. We find a scarcity in the operationalization of
the indexes and a lack of well-defined task goals. This limited our conceptual frame-
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work design to only one of the dominant scenarios. To overcome this scarcity, we
make use of the expected indexes that can be substituted based on our understanding
from the theory and practice. Thus, there is an urgent need for practitioners (or
teachers) to act upon the other theoretical indexes when monitoring collaboration
quality in CC using multiple modalities. This can make more indexes from the
theory visible in practice and lead us to define a measurable set up for each scenario.
Nevertheless, the framework is a starting point for making design-based decisions of
a particular scenario of CC so that more indexes can be added up to make it complete
and strengthen the CC quality detection.

2.5 Conclusions and Future work
CC has acquired significant importance due to the ease of detecting collaboration
from the universal use of sensors. In this study, we performed a literature review to
look into the indicators that indicate the quality of collaboration from two different
perspectives (i.e., from the sensors used to detect the indicators, then indexes, and
thus the quality of CC, and from the different scenario-driven prioritization of CC
to contextualize the quality indicators, indexes of CC). Our goal for this review
was to use these quality indicators of CC from past studies and create a conceptual
framework (or data dictionary) for practitioners and researchers to which they
can refer whenever needed. To this end, we found different low-level indicators
like hand movements, head movements, eye gaze, posture, and number of ideas.
These can be grouped into different indicator types such as audio, posture, and
gesture. Some indicators (such as total speaking time, and overlap in speech) are
consistently indicative of CC quality while some others (distance between group
members, synchrony in posture movements) are not. Next, we looked at the high-
level indexes (comprising of synchrony, equality, IA, IVA, mutual understanding,
information pooling, and reciprocal interaction) as the aggregated result obtained
from the indicators of CC. Indexes describe the relationship between the different
indicators considering the distribution of the collaborating group and act as proxy
measurement criteria to detect and predict the collaboration quality. Moreover, the
indexes of collaboration can be linked to some particular indicator types for detecting
the quality of collaboration.

However, this understanding is incomplete unless we uncover the role of scenarios
in detecting the indicators of collaboration and modeling CC. We find this in our
scenario-driven prioritization mapping of CC parameters (such as behavior, inter-
action, etc.) onto the indicator types and the indexes to move towards designing a
conceptual framework for modeling CC. This final confluence of both approaches
of modeling collaboration quality (i.e., sensor-based and scenario-based) gives us a
holistic picture of CC quality detection in a particular scenario. We find that when we
analyze the indicators further in terms of the scenario-based goals and task context.
Moreover, we find different limitations in the previous works such as inconsistent
evidence provided by some indicators, coding complexity in open-ended tasks, and
inconclusive evidence provided by some of the indicators because of the use of
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machine learning black-box approaches.

There are some limitations to this review. The conceptual model that we explain at
the end by mapping the parameters in scenarios to the indicators and indexes is not
complete, rather is only the starting point. We have plugged in some of the indexes
marked with an asterisk in the Table 2.4 although we do not know if they will remain
the same once they are operationalized. We did not model the conceptual framework
for other scenarios due to a lack of sufficient operationalized indexes and task-based
goals in those scenarios. This opens up future avenues of research if we can borrow
from research on collaboration indexes in an online setting. For instance, previous
works have detected different indexes during remote or online collaboration (from
the eye gaze as an indicator) like reaching consensus, information pooling, and time
management (Schneider and Pea, 2014b) (as outlined in Meier et al. (2007)) with
the help of network analysis and graph theory. These works can provide us a fertile
ground in a CC setting to uncover other indexes of collaboration that can drive the
modeling. Moreover, some indexes have been operationalized in a handful of studies
which brings into question their role in detecting the quality of collaboration on a
larger scale.

Another limitation is that we did not look into different types of study (i.e., correl-
ation vs interventionist) keeping in mind the scope of the review. This can open
doors for another direction of future work. Our goal in the future will be to use
the model of CC in the designed scenarios and then look into different feedback
mechanisms that have been built using these indicators to facilitate collaboration.
This combined with the indicators of collaboration quality can help us to derive the
conceptual and implementation model to discover other indexes of collaboration. As
a result of which, it will pave the way to form the feedback mechanism to facilitate
collaboration in real time for a particular collaboration task.

Finally, we did not consider the number of groups used by different studies. We
think this will be a good direction of future research even though it will be difficult
to determine a threshold as to how many groups considered in a study will make
it worthy of inclusion in the review. As per the title of the review article, we do
not think we are there yet (i.e., the whole nine yards) because CC modeling is
dependent on various factors as we have mentioned in the introduction, that is, the
definition of collaboration and its quality is dependent on many factors like how
it is operationalized, in what context, and the impact of culture. Thus, we have a
made a starting step to model CC in one of the scenarios taking into account the
indicators, indexes, and parameters but not considering the number of groups, or
type of algorithms used.
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Chapter 3

Towards Automatic Collaboration Analytics
for Group Speech Data Using Learning
Analytics

After the literature review on the indicators of collaboration quality and defining
the conceptual model for collaboration quality detection and prediction system in
Chapter 2, we move towards the prototyping of a technical set up for automated
collaboration analytics. For doing this, we are using group speech data in this
chapter taking the help of the definition of CC quality in Chapter 2. Most of the past
works have used the audio modality to detect the quality of CC. The CC quality can
be detected from simple indicators of collaboration such as total speaking time or
complex indicators like synchrony in the rise and fall of the average pitch. Most
studies in the past focused on “how group members talk” (i.e., spectral, temporal
features of audio like pitch) and not “what they talk”. The “what” of the conversations
is more overt contrary to the “how” of the conversations. Very few studies studied
“what” group members talk about, and these studies were lab based showing a
representative overview of specific words as topic clusters instead of analysing the
richness of the content of the conversations by understanding the linkage between
these words. To overcome this, we made a starting step in this chapter based on
field trials to prototype, design a technical set up to collect, process and visualize
audio data automatically. The data collection took place while a board game was
played among the university staff with pre-assigned roles to create awareness of
the connection between learning analytics and learning design. We not only did
a word-level analysis of the conversations, but also analysed the richness of these
conversations by visualizing the strength of the linkage between these words and
phrases interactively. In this visualization, we used a network graph to visualize turn
taking exchange between different roles along with the word-level and phrase-level
analysis. We also used centrality measures to understand the network graph further
based on how much words have hold over the network of words and how influential
are certain words. Finally, we found that this approach had certain limitations
in terms of automation in speaker diarization (i.e., who spoke when) and text
data pre-processing. Therefore, we concluded that even though the technical set
up was partially automated, it is a way forward to understand the richness of the
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conversations between different roles and makes a significant step towards automatic
collaboration analytics.

This chapter is based on:

Praharaj, S., Scheffel, M., Schmitz, M., Specht, M., and Drachsler, H. (2021). Towards
Automatic Collaboration Analytics for Group Speech Data Using Learning Analytics.
Sensors, 21(9), 3156, doi: 10.3390/s21093156.
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3.1 Introduction
Collaboration is an important 21st Century skill (Dede, 2010). Basically, collabora-
tion occurs when two or more persons work towards a common goal (Dillenbourg,
1999). The majority of the works in the field of learning analytics to generate
collaboration insights have focused on the analysis of distributed (or online) col-
laboration (Jeong and Hmelo-Silver, 2010). However, with the ubiquity of the
use of sensors (Grover et al., 2016; Kim et al., 2008), multimodal learning analytics
(Blikstein, 2013; Praharaj et al., 2018a; Di Mitri et al., 2018b) has picked up pace,
thus shifting the focus to the analysis of co-located collaboration (CC) (or face-to-face
collaboration) with the help of sensor technology (Praharaj et al., 2018b; Kim et al.,
2008; Praharaj et al., 2019; Tausch et al., 2014). Moreover, sensor technology is
scalable (Reilly et al., 2018) and has become affordable and reliable in the past dec-
ade (Starr et al., 2018). CC takes place in physical spaces where all group members
share each other’s social and epistemic space (Praharaj, 2019). “The requirement of
successful collaboration is complex, multimodal, subtle, and learned over a lifetime.
It involves discourse, gesture, gaze, cognition, social skills, tacit practices, etc.” (Stahl
et al. (2013) pp. 1–2, emphasis added). Therefore, the quality of collaboration can
be detected from one or more of the different modalities like audio, video and data
logs. Audio is a commonly occurring modality during collaboration (Bassiou et al.,
2016; Bachour et al., 2010; Bergstrom and Karahalios, 2007; Terken and Sturm,
2010).

The quality of co-located collaboration from group speech data alone has been
detected in the past using indicators of collaboration derived from audio. The
indicators of collaboration can be as simple as total speaking time of a group member
(Bachour et al., 2010) or as complex as synchrony in the rise and fall of the pitch
(Lubold and Pon-Barry, 2014). For example, Bachour et al. (2010) mirrored the
total speaking time of each group member in the form of the number of glowing
coloured LED lights for each group member on a tabletop display. Then, they
found that group members who spoke more reduced their speaking time and group
members who spoke less improved their total speaking time. In the other example,
two members in a group were speaking at different amplitudes, but exhibiting the
same pattern of their speech (e.g., the rise and fall of the average pitch of both
members were similar to each other), then they showed a high level of synchrony
(Lubold and Pon-Barry, 2014), which resulted in a better rapport and better quality
of collaboration. Therefore, the collaboration indicators are context dependent. This
is due to the differing goals and fundamental characteristics or parameters (such as
group behaviour, interaction, composition) of the group in each collaboration context.
The parameters of collaboration are primary aspects such as team composition (e.g.,
experts, initiators or roles of being initiators), the behaviour of team members (e.g.,
dominance, rapport, conflict), the types of interaction (e.g., active or passive)
and behaviour during collaboration (e.g., knowledge co-construction, reflection,
coherence, misconception, uncertainty).

Most studies on CC in the past focused on automated analysis using temporal
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(time domain features like the energy of the signal, amplitude), spectral indicators
of speech (frequency-based features like pitch, rhythm) (Lubold and Pon-Barry,
2014; Bassiou et al., 2016) and other non-verbal indicators like total speaking time
(Bergstrom and Karahalios, 2007; Bachour et al., 2010), frequency of turn taking
(Kim et al., 2015) or using machine learning classifiers to analyse these features of
speech (Luz, 2013; Bassiou et al., 2016). Therefore, most of these studies focused
on the analysis of the non-verbal indicators of audio instead of looking at the verbal
audio indicators such as the content of the conversation, actual keywords used,
dialogues and the main themes of conversation. These non-verbal audio indicators
do not convey true meaning because most used black-box machine learning methods
and some studies reported the indicators (e.g., silence is an indicator for collaboration
quality (Luz, 2013)) without informing about the valence, i.e., how good or bad
these indicators are. Moreover, the non-verbal audio indicators are less overt as
compared to verbal audio indicators. For example, higher or lower total speaking
time may be a good or bad indicator of collaboration quality, while “yes” or “no”
will most of the time convey the same semantic meaning in any conversation. Few
other studies have focused on the non-automated (or semi-automated) coding and
analysis of the content of speech, which is laborious (Bassiou et al., 2016; Lubold
and Pon-Barry, 2014).

Apart from the majority of studies focusing on the analysis of non-verbal audio
indicators, very few studies used the verbal audio indicators or the content of the audio
for the analysis of CC quality. For example, for “talk traces” (Chandrasegaran et al.,
2019) and “meeter” (Huber et al., 2019), verbal audio indicators of collaboration
were used for the analysis. In “talk traces”, Chandrasegaran et al. (2019) did topic
modelling during the meeting and then showed the topic clusters as a visualization
feedback by comparing with the meeting agenda, which was fixed before the meeting.
Moreover, topic modelling shows a surface-level analysis based on a collection
of representative keywords, which is not rich enough to understand the group
conversations in depth. It does not show the proper linkage between these words
and the rest of the conversation, which can lead to the loss of the holistic meaning
of the conversations and a possible under-representation of certain topics. The other
“meeter” study (Huber et al., 2019) classified the dialogues of the group members
based on a lab study to measure information sharing and shared understanding
while generating ideas. The collaborative task was based on three open-ended
fixed topics where group members needed to brainstorm and share their ideas in
a short session of 10 min. Their performance (or quality of collaboration) was
measured based on the number of ideas they wrote down on the cards, which was
quality controlled before counting the total ideas to weed out bad ideas. They did
not find significant effects of information sharing and shared understanding on
the quality of collaboration. Therefore, these studies on verbal audio indicators of
collaboration were too abstract in either choosing representative keyword clusters as
topics or classifying dialogues into a few selected categories that do not affect the
collaboration quality. They did not show the linkage of the conversation between
different group members. Furthermore, these studies were performed in controlled
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settings. Therefore, to overcome these limitations, we conducted a field trial to build
a technical set up and then prototyped it in real-world settings to advance towards
automatic collaboration analytics from group speech data. To this end, we have the
following overarching research question:

RQ: To what extent can co-located collaboration analytics from group speech data
be done automatically?

To answer this primary research question, we sub-divided it into two sub-research
questions:

RQ1 What co-located collaboration indicators have been detected from group speech
data in past studies?

RQ2 What collaboration analytics can be employed to analyse group speech data
from co-located collaboration automatically?

To answer RQ1, we look at the already available literature in Section 3.2. To answer
RQ2, we designed a technical set up and report about the materials and methods used
in Section 3.3. Our objective of building this technical set up was to analyse the “what”
of the conversation in an automatic manner. We collected, processed and visualized
audio data automatically. The data collection took place while a board game was
played among the university staff with pre-assigned roles to create awareness of
the connection between learning analytics and learning design. This game was also
helpful to collect indicators for measuring student and teacher behaviour. We not
only did a word-level analysis of the conversations, but also analysed the richness
of these conversations by visualizing the strength of the linkage between these
words and phrases interactively. Our main goal was to use this technical set up
to do role-based profiling based on the exchange of conversation turns taking into
account the content of the conversation. To analyse the content of the conversation,
we generate meaningful visualizations and interpretations in Section 3.4. In this
visualization, we used a network graph to visualize turn taking exchange between
different roles (such as teacher, student and study coach) along with the word- and
phrase-level analysis. We also used centrality measures to understand the network
graph further based on how much words have hold over the network of words and
how influential are certain words. Then, we discuss our findings in Section 3.5 and
the challenges and limitations in Section 3.6. We found certain limitations of our
technical set up in terms of automation in speaker diarization (i.e., who spoke when)
and data pre-processing. Finally, we conclude with a highlight of the implications of
this work and future work in Section 3.7. Therefore, the main reason for building
this technical set up was to make a starting step towards automatic collaboration
analytics, which can assist different stakeholders in a university to understand the
group conversations in depth, do role-based profiling and analyse how each group
member contributes to the discussion.
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3.2 Indicators of Co-Located Collaboration from Au-
dio

Audio is a commonly occurring modality during collaboration (Bassiou et al., 2016;
Bachour et al., 2010; Bergstrom and Karahalios, 2007; Terken and Sturm, 2010).
Indicators of collaboration derived from audio are: prosody of sound such as pitch,
spectral property, tone and intensity (Bassiou et al., 2016); non-verbal features like
total speaking time of group members (Bergstrom and Karahalios, 2007; Bachour
et al., 2010), interruptions (Oviatt et al., 2015) and overlap or no overlap duration
(Bassiou et al., 2016); speaking time of a group member combined with the attention
of other group members measured by their eye gaze (Terken and Sturm, 2010);
linguistic features such as pronouns, sentence length and prepositions (Schneider
and Pea, 2014a, 2015); verbal features like the keywords used, topics covered
(Chandrasegaran et al., 2019) and dialogues (Huber et al., 2019). It has been
found that a combination of both group speech-based and individual speaker-based
indicators is a good predictor of the collaboration quality (Bassiou et al., 2016). As
seen from the examples in different past studies, these indicators of collaboration
are dependent on the context. This is due to the differing goals and fundamental
characteristics or parameters (such as group behaviour, interaction, composition)
of the group in each collaboration context. The parameters of collaboration are
primary aspects such as team composition (e.g., experts, initiators or roles of being
initiators), the behaviour of team members (e.g., dominance, rapport, conflict), the
types of interaction (e.g., active or passive) and behaviour during collaboration (e.g.,
knowledge co-construction, reflection, coherence, misconception, uncertainty).

To elaborate further, Terken and Sturm (2010) designed a mechanism to give real-
time feedback to participants in group meetings by analysing their speaking time
and eye gaze behaviour. Feedback was given in the form of different coloured circles
representing attention to and from speakers and listeners measured by eye gaze and
the total speaking time of that member. This feedback was projected on top of the
table in front of where each participant was sitting using a top-down projector. They
performed both quantitative and qualitative evaluation of the effect of the feedback:
the feedback was accepted as a positive measure by most group members; the use of
feedback had a positive impact on the behaviour of group members as they had a
balanced participation. There was a balanced participation in terms of the speaking
time of each group member. It was found that the eye gaze measured to track the
total attention of the listener and speaker was not a good predictor of the quality
of collaboration. As per the authors, this was because of the difficulty in intuitively
controlling gaze behaviour as compared to controlling the speaking behaviour even
though both can be consciously controlled.

Some other works also used total speaking time as an indicator of collaboration
(Bergstrom and Karahalios, 2007; Bachour et al., 2010). The participants were
having a group conversation around a smart table. The total speaking time of
each member was reflected back to them by a coloured LED light display (Bachour
et al., 2010) and concentric circle visualization (Bergstrom and Karahalios, 2007)
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on the table. They found that this helped to regulate the equality of participation
during a group conversation. The group members who spoke most of the time (or
were dominant) started to speak less than usual, and the members who spoke less
started speaking more, thereby promoting equality of participation among the group
members. Therefore, the group that had better equality of speaking time had better
quality of collaboration as measured by a post-test.

To analyse other audio indicators in depth, Bassiou et al. (2016) used non-verbal
features as collaboration indicators. They used a combination of manual annotation
and a support vector machine to predict the collaboration quality of the group.
The types of collaboration quality marked by expert annotators were: good (when
all three members in the group were working together and contributing to the
discussion), cold (when only two members were working together), follow (when
one member was taking the lead without integrating the whole group) and not
(when everyone was working independently). This coding was based on two types
of engagement: simple (i.e., talking and paying attention) and intellectual (i.e.,
actively engaged in the conversation). It was found that a combination of the
group speech activity indicators (i.e., solo duration, overlap duration of two persons,
overlap duration of all three persons, the ratio of the duration of the speaking time
of the least and most talkative person in the group, the ratio of the duration of the
speaking time of the second most talkative student to the most talkative student in
the group) and individual speaker-based indicators (i.e., spectral, temporal, prosodic
and tonal) were good predictors of collaboration quality as marked by the annotators.
Moreover, the group-level indicators alone were good predictors of collaboration
quality. According to the authors, this was because the individual speaker-based
indicators were agnostic to the group information, contrary to the group speech
activity indicators. All these indicators were fed to a machine learning classifier
to get the measurements, so in the end, it was a black-box approach. They did
not employ any fine-grained analysis, which could help to uncover the degree of
contribution of different indicators to the prediction of good or bad collaboration
quality.

Similarly, speaker-based indicators like the intensity, pitch and jitter were used to
detect collaboration quality among working pairs (Lubold and Pon-Barry, 2014).
When two members in a group are speaking at different amplitudes, but exhibiting
the same pattern of their speech (e.g., the rise and fall of the average pitch of both
members are similar to each other), then they are showing a high level of synchrony
(Lubold and Pon-Barry, 2014). Lubold and Pon-Barry (2014) found a positive
correlation between synchrony and rapport (generated by comparing perceptual
rapport from annotators and self-reported rapport) during collaborative interactions.
A good rapport between group members can enhance the collaboration (Chapman
et al., 2005). The prediction gave a high-level overview of non-verbal features
like pitch, but missed the fine-grained semantic meaning of different non-verbal
features such as turn taking, emotional tone while speaking, cross-talk and number
of interruptions. These fine-grained vocal characteristics such as turn taking and
overlap of speech are distinctive of collaboration quality; more frequent speaker
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changes (i.e., turn taking) with overlap of speech (Kim et al., 2015) indicates a good
quality of collaboration. Previous research also indicated that overlap in speech is
associated with positive group performance (Çetin and Shriberg, 2006; Dong et al.,
2009).

Additionally, other works focused on expertise detection and productive problem
solving (Luz, 2013; Ochoa et al., 2013; Oviatt et al., 2015), estimation of success
(Spikol et al., 2017b), collaboration detection (Viswanathan and VanLehn, 2017)
and differentiating student learning strategies (Worsley and Blikstein, 2015) during
collaboration. Oviatt et al. (2015) tracked the speech of students working in groups
solving math problems. They found that overlapped speech was an indicator of
constructive problem-solving progress, expertise and collaboration. They used both
the number of overlaps in speech and the duration of overlap in speech when tracking
the interruptions during speaking. Luz (2013) used the non-verbal audio indicators
like speech, silence, pause and transition from group speech to individual speech
as indicators to predict performance and expertise on a math dataset corpus of
groups collaborating in solving math problems. Using these non-verbal indicators as
features, they trained a model to predict the expertise of the group members and
their collaborative performance. They found that these features were able to predict
the expertise, but not the group performance. They did not do any analysis to find
the valence of these individual audio indicators. Spikol et al. (2017b) used audio
level and other non-verbal indicators to estimate the success of collaboration activity
(i.e., measured by the human observers) while performing open-ended physical tasks
around smart furniture. They found that audio level alone was sufficient to predict
the quality of collaboration with high accuracy. A binary coding classification for
collaboration quality was used instead of a richer set of fine-grained level of coding.
Again, a deep qualitative analysis of how audio level contributed to the detection of
collaboration quality was missing. Table 3.1 gives an overview of some of the studies
on detecting the indicators of collaboration from audio and their operationalization.

All the above studies analysed the non-verbal audio indicators (such as total speaking
time, number of interruptions while speaking, overlap of speech) instead of the
verbal audio indicators of collaboration. Non-verbal audio indicators of collaboration
are less overt as compared to verbal audio indicators. Semantically, the content of
the conversation, i.e., the verbal audio indicators of collaboration, have the same
meaning most of the times.

With the rise of automatic speech recognition techniques, few studies (for example,
“talk traces” (Chandrasegaran et al., 2019), “meeter” (Huber et al., 2019)) took into
account verbal audio indicators of collaboration. In “talk traces”, Chandrasegaran
et al. (2019) did topic modelling, then showed the combination of words as topic
clusters and also compared it with the meeting agenda. Although topic modelling
shows a representative overview of the different word clusters and their evolution
during collaboration, it does not show the link between these words and the rest
of the conversation, which makes it hard to understand the meeting as a whole. In
“meeter” (Huber et al., 2019), the dialogues of the group members were categorized
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Table 3.1 Indicators of collaboration and its operationalization.

Parameters Indicators Operationalizing Col-
laboration Quality

References

Dominance Total speaking
time

If all group members
speak for almost equal
total time, then there is
less dominance in the
group and better qual-
ity of collaboration

Kim et al. (2008);
Bachour et al.
(2010); Bergstrom
and Karahalios
(2007)

Active particip-
ation

Frequency of
turn taking

More frequent turn
changes indicate higher
active participation
and better quality of
collaboration

Kim et al. (2015)

Roles (one
leader and
other non-
leaders)

Keywords
used, topics
covered

Closeness of the topics
generated in real-time
to the topics on the
meeting agenda

Chandrasegaran
et al. (2019)

Rapport Synchrony in
the rise and
fall of the aver-
age pitch

Higher synchrony in the
rise and fall of the av-
erage pitch indicates
higher rapport and bet-
ter collaboration quality

Lubold and Pon-
Barry (2014)

Expertise Overlapped
speech

Overlap in speech is an
indicator of construct-
ive problem solving, ex-
pertise and good CC
quality

Oviatt et al.
(2015); Zhou et al.
(2014)

based on a collaborative task (i.e., brainstorming and sharing ideas on open-ended
fixed topics in short 10 minute sessions) in a lab setting to measure information
sharing and shared understanding. The number of ideas generated was an indicator
of collaboration quality. They did not find any significant effects of information
sharing and shared understanding on the quality of collaboration. Therefore, these
controlled lab studies analysing the content of the conversation provided a high level
representative overview of few topics or categories without showing the relationship
between the different group members based on their conversations. Therefore, to
overcome this, we describe the prototyping of our technical set up with the help of
field trials in a real world setting.
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3.3 The Technical Set up
In this section, we describe the technical set up: tasks undertaken, their context,
architecture of the set up, data collection, pre-processing, processing and methods
used for the data analysis.

3.3.1 Task Context
The collaboration task that we used as the basis for our audio recordings was
to design a learning activity using the Fellowship of Learning Activity ((FOLA)2)
(http://www.fola2.com/, last accessed on 30th April 2021) game. It is a board
game (Schmitz et al., 2019) (e.g., an online version of the game (https://game.
fola2.com/, last accessed on 30th April 2021) currently under development) played
face-to-face with different themed cards and roles that is used in workshops to create
awareness of the connection between learning analytics and the learning design.
It also can be used as an instrument to collect indicators when planning learning
analytics already while designing learning activities. This game was used in 14
face-to-face meetings (with each meeting spanning between 60 and 90 min) among
different teaching staff and other staff of a university. This task had different phases,
which were colour-coded based on the cards supposed to be used in that phase (as
blue, red and yellow) (the phases and cards have the same meaning and are being
used interchangeably henceforth) with different roles assigned to each member. The
blue (card) phase defines the steps in the learning activity. Each learning activity
consists of a sequence of interactions such as learner to teacher, learner with learning
environment, material to learner and so on. The red phase or learning enhancing
technology cards are part of the step in the game where we search for enhancements
of the interactions using technology such as sensors, virtual reality, etc. The yellow
phase defines what we want to know about the interaction or within the learning
activity. For example, it can be engagement, social interaction or how students
take initiative. The yellow cards can be used to get input on what teachers do in
classrooms to value their design choices or actions. Each card also had some prompts
to steer the group conversation.

We recorded the conversations during these meetings. The conversations were in
Dutch. Each group member was pre-assigned roles during the conversation: study
coach, student, technology-enhanced learning learning analytics (TEL LA) advisor, game
master, educational advisor and teacher. These roles had the same meaning as a
real-life student, teacher or advisor, while the game master was the main moderator
of the game who also helped to steer the conversation during the task. Each group
member had a clip-on microphone attached along with the respective audio recorder,
which recorded and stored the conversation locally in that recorder. Next, we outline
the architecture used for data collection, processing and analysis.

3.3.2 Architecture
First, the audio files from each group member were saved into a storage space in the
respective local device, i.e., the audio recorder. Then, after the meeting, these files
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were immediately transferred to the central storage space, which was the long-term
storage. For the pre-processing and subsequent operations on the data, we did
not disturb the original data collected, rather we took a copy of the files in the
storage space for the pre-processing and processing unit. Here, we pre-processed
and transcribed these audio files using Google speech-to-text. Finally, the data
were processed and analysed to generate meaningful insights and passed on to the
visualization unit to generate the visualizations. These visualizations were generated
in a post hoc manner after the group meetings. Figure 3.1 shows the outline of
the current architecture for collecting and analysing audio data during CC. In the
subsequent sections, we describe the pre-processing, processing and analysis.

...Group member 1 Group member nGroup member 2

...
Central storage space

Pre-processing, processing and analysis unit

HTML page showing
the visualizations

Member 1 storage space

+ 1.wav audio file
+ 2.wav audio file
+ ...
+ n.wav audio file

Member 2 storage space

+ 1.wav audio file
+ 2.wav audio file
+ ...
+ n.wav audio file

Member n storage space

+ 1.wav audio file
+ 2.wav audio file
+ ...
+ n.wav audio file

Local storage
space

Member 1 storage space

+ 1.wav audio file
+ 2.wav audio file
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+ n.wav audio file
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+ 1.wav audio file
+ 2.wav audio file
+ ...
+ n.wav audio file
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+ 1.wav audio file
+ 2.wav audio file
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space...
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Storage space for the pre-processing,

processing unit

Member 1 storage space

+ 1.wav audio file
+ 2.wav audio file
+ ...
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Member n storage space

+ 1.wav audio file
+ 2.wav audio file
+ ...
+ n.wav audio file

Member 2 storage space

+ 1.wav audio file
+ 2.wav audio file
+ ...
+ n.wav audio file

Visualization unit

Figure 3.1 Architecture for collecting and analysing audio data during CC.

3.3.3 Data Pre-Processing and Wrangling
The data pre-processing, processing, analysis and visualizations were done in Python
using different openly available libraries. We pre-processed the stored audio files for
each group member by extracting the timestamp of the audio file, which denoted the
exact end time of that audio file (in .wav audio file format) and the duration of the
audio file. Then, we derived the start time of the audio file using the end time and
the duration of the file. Next, we associated the conversations in each audio file with
the group member playing a certain role, thereby associating with the group member
who was speaking using VoxSort Diarization (https://www.voice-sort.com/, last
accessed on 30th April 2021) software. This is known as speaker diarization, which
helped us figure out “who spoke when?”. The group members playing specific
roles were anonymized by mapping their names to roles, and these audio files were
combined into one file. Finally, we transcribed this audio file using Google speech-to-
text (free version) in Python. For this transcription, we split the audio file into 5 s
window chunks (with a small overlap between the adjacent windows), which worked
the best in our case. This helped us to increase the accuracy of the transcription,
which was otherwise not good enough when we used long files of 1 to 30 min in
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duration. This process was repeated, and finally, these chunks were combined, sorted
by timestamps from the beginning till the end of the meeting. While performing
these subsequent steps, the information like timestamp and speaker role was put
into the data tables in a .csv file format. Figure 3.2 shows the schematic overview.

Audio file 1

Audio file n

Audio file 2

Diarization,
Timestamping

Audio file
Transcription

.csv file with
roles and 

timestamps

.

.

.

Chunk 1
transcribed

Chunk 2
transcribed

Chunk n
transcribed

.

.

.

Final .csv file
generated with the
roles, timestamps
and transcriptions

Final file 
generation

Figure 3.2 Data pre-processing schematic overview.

Then, the final extracted data along with the timestamps were stored in data tables
in a .csv file format, as shown in the Figure 3.3. Basically, the data table had the start
time, the end time, the roles of the group member under names (256 under names
denotes noise) and the utterance as text_y. This data table represented the ordered
conversation from the beginning till the end of the meeting. If Google speech-to-text
failed to transcribe an audio file, then the corresponding text entry was left blank.
Normally, this happened when a part of the audio was of a really short duration
or had some random sounds like a click sound, um, claps or laughter. Now, the
wrangled (cleaned, structured and enriched raw data in a desired format) data were
ready for processing and analysis.

Figure 3.3 A sample from the data table in .csv format.
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3.3.4 Data Processing
The data table stored as a .csv file was processed. Our primary focus was to
analyse the content of the conversations to generate meaningful insights. To do
this, we proceeded with text cleaning, processing and analysis, which come under
the umbrella term of natural language processing. The usual approach in natural
language processing is to first to clean the text. Next, we built the text model from
the conversation corpus. We had to make sure that our text model could understand
similarities and also understand when two different words meant similar things.
Therefore, the following steps were taken by us in order to achieve this cleaning:

• Tokenization—The process of splitting sentences into good words or tokens. It
lays the foundation for the next steps of cleansing.

• Elimination of stop words—The process of removing words that mean little;
these are usually words that occur very frequently. Apart from using the
libraries in Python for stop word removal, we also defined our list of contextual
stop words that were considered unimportant for this model.

• Lemmatization and stemming—Lemmatization and stemming convert a word
into its root form. For example, for the words running and runs, the stem of
both words is run. Thus, after we stemmed, these words would be grouped
together and retain same meaning for the model even though they had different
forms.

• Sentence segmentation—We split the unstructured spoken text into different
sentences, which helped the model understand the boundaries of the long text
to make it more semantically distinct.

• Vectorization—Since we cannot input plain words into a model and expect it
to learn from it, we had to vectorize the words. This basically means creating
unit vectors for all words. As the machine can understand numbers only, so the
vectorized version of words will create a dictionary for the model, which would
be useful later while generating bigrams (two word combinations appearing
together), trigrams (three word combinations appearing together) and topic
modelling based on the keywords.

After cleaning, we proceeded with the analysis and visualizations. For the analysis,
we first visualized an exploratory view of the keywords used in different phases of
the CC task by different roles with the help of the cleaned text model to understand
the content of the conversations. Then, we proceeded with the detailed analysis
with the help of richer visualizations to understand the content and context of
the conversation further with the help of our technical set up. In the subsequent
sub-section, we describe the materials and methods used for the data analysis.

3.3.5 Data Analysis
For the scope of this article, where we describe a proof-of-concept to prototype
the development of our technical set up towards automatic collaboration analytics
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for group speech data, we restricted our analysis to only the first out of the 14
meetings. First, we visualized in an exploratory manner to see the frequently used
keywords in the text model by different group members playing different roles
by using frequency analysis. To make sense of the visualizations and understand
the context of the conversations, we took the help of the game master to generate
summarized annotations for each phase in English (for example, a sample annotation
can be seen in Figure 3.4).

Figure 3.4 A sample annotation of the CC task.

Then, to get a representative overview of these keywords, we examined the topical
clusters obtained by using LDA (latent Dirichlet allocation) and LSI (latent semantic
indexing) in different phases of the meeting session. LSI helped us to identify
the coherence score based on which we decided the ideal number of topics in
that phase, and then, we used LDA (which is a probabilistic approach of topic
modelling) in multiple iterations to find these topical clusters. LDA and LSI just show
the representative keyword collection and are unsupervised algorithms for topic
modelling, which can cluster semantically similar words without the need for user
labelling (or input).

To go in depth into the representative overview of these words in relation to the word
exchange between different roles, we looked at the different bigrams (consecutive
two-word phrases) and also ranked them based on the tf-idf (term frequency-inverse
document frequency) ranking. tf-idf ranking of the bigrams helped to give an
overview about the frequently (with a lower tf-idf ranking) and rarely (with a higher
tf-idf ranking) used bigrams. Next, we wanted to see the relationship between these
words and phrases with the help of parts-of-speech tagging and construction of
knowledge graphs. Knowledge graphs show the relationship between the subject,
the object with the verb or the verb phrase linking them.

Knowledge graphs (as shown in the visualizations section) are sometimes difficult
to interpret because of the inaccurate sentence segmentation of unstructured data.
Moreover, they also do not show the strength of different words (i.e., how often these
words have been used) and the strength of linkage between these words. To show
this, a co-occurrence matrix was made. A co-occurrence matrix shows how many
times the words co-occur in the same sentence. For example, in the two sentences:
“I love riding bike” and “Bike ride is loved by many”, the co-occurrence matrix after
doing text pre-processing (where we tokenized the sentences, removed stop words
like “is”, “by” and lemmatized and stemmed “loved”, “riding”) would be as in Figure
3.5. Therefore, all the tokenized words in the text corpus are listed in rows once and
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again in columns, and then, the value in the co-occurrence matrix shows the number
of times each word co-occurs with the other word in one sentence. Therefore, in
this example, “love bike ride” is a strong combination, which is evident from the
co-occurrence matrix. Machines understand this co-occurrence matrix as it shows
the strength between words with the help of numbers.

Figure 3.5 A sample co-occurrence matrix.

Then, we visualized this co-occurrence matrix using social network analysis or the
network graph. In this network graph (as shown in the visualizations section), each
word from the text corpus can be shown as a node, and the edges between these
nodes denote the strength between these words like how often they co-occur in the
same sentence. To make the network graph visualization easier and intuitive, we built
an interactive feature, which helped to highlight a specific node and its neighbours
in the graph by selecting that specific node. To analyse the network graph in depth,
we also looked at different centrality measures such as the betweenness centrality
(BC) and eigenvector centrality (EC) of these words. Betweenness centrality shows
how often a node (or word) acts as a bridge node, that is the number of times a
node lies on the shortest path between other nodes. For explainability, this means
that a node (or a word) with high betweenness centrality would have more control
over the network. Another centrality measure that can be a good indicator of the
influence of a node (or word) is eigenvector centrality. Therefore, a node with a high
eigenvector centrality score must be connected to many other nodes who themselves
have high scores. In the next section, we describe the visualizations generated by
using these data analysis methods in the context of the first session.

3.4 Visualizations
First, we did an exploratory visualization using this technical set up to see the
frequently used keywords in different phases by different roles. As described in the
Task Context Sub-section above, in the blue phase, the main objective was to discuss
the steps in the learning activity. Each learning activity consisted of a sequence of
interactions such as learner to teacher, learner with learning environment, material
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to learner and so on. Figure 3.6 shows the frequency of the words used in different
utterances (or spoken segments) with the roles. “Team”, “groep” and “groepjes” in
Dutch mean “team”, “group” and “groups”, respectively, in English. The lemmatizer
for Dutch language did not work as expected for all the words, so “groep” and
“groepjes” were separate, and there were a few words like that that needed manual
tweaking. The main conversation in this phase was about groups or centred on
groups. The teacher and TEL LA advisor spoke mostly about groups. “Vraag”
and “test” actually comprise a card “vraag test” played for the interaction between
teacher and learner, which means “question test”. “Belbin” roles comprise a card for
the interaction between material and learner. Belbin team roles are actually nine
different team role behaviours that make a high performing team. “Blok”, “1”, “2”
actually refer to the Block 1 and Block 2 cards played for the interaction between
learner and learner.

Figure 3.6 Top 50 word utterance frequency in the blue phase with roles.

The red phase as defined earlier was supposed to be a conversation about learning
enhancing technology. Figure 3.7 shows the frequency of the words used in different
utterances (or spoken segments) with the roles. The Dutch term “technologie” refers
to the use of technology as was desired to be found in this phase. Furthermore,
TEL LA advisor fulfilled the role quite well by being the sole speaker on technology
apart from the game master, who was always present in most of the discussions
because of his moderating nature. Some words that related to technology or its usage
were: “moodl”, “poster”, “concept”, “mapping”, “mobil” and “shakespeak”. “Moodl”
refers to moodle for the assignment. The concept mapping tool was referred to by
the study coach and the educational advisor, and “shakespeak” was an interaction
polling system used for interactive lectures in the classroom, which can act as an
interaction booster. This was referred to only by the TEL LA advisor. The use of the
mobile (“mobil”) phone to take a picture of the post-its (i.e., a paper sticky note)
was discussed in this phase.

The yellow phase as defined earlier was supposed to be a conversation on the inter-
action within the learning activity and aspects a teacher might want to know about
them. For example, it can be engagement, social interaction or how students take
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Figure 3.7 Top 50 word utterance frequency in the red phase with roles.

Figure 3.8 Top 50 word utterance frequency in the yellow phase with roles.

initiative. Figure 3.8 shows the frequency of the words used in different utterances
(or spoken segments) with the roles. “Interactie” refers to the “interaction”, and
“aanwez” means “presence”, which was at the top of the word utterance frequency
because there was a specific discussion on presence and having fun, as we can see
in the annotations. “Zelfstudie” and “monitor” mean “self-study” and “monitor”,
respectively. They were referred to by the TEL LA advisor and the teacher during the
conversation about student to material interaction.

To get a representative overview of these keywords, we examined the topical clusters
obtained by using LDA and LSI in the red phase, which had a technological under-
pinning. We chose to go deeper into this phase because of our inclination towards
technology. Figure 3.9 shows the overview of the three topical cluster word clouds
(with each word cloud consisting of the top 10 probable words) obtained in the
red phase. As LDA and LSI just show the representative keyword collection and
are unsupervised algorithms for topic modelling, we needed to label it to assign a
meaning out of each cluster. Upon examining the probabilistic inclination of the
topics, we found that TEL LA advisor had a higher probabilistic likelihood of getting
Topic 1 as compared to other roles. Topic 1 dealt with the use of different types of
interaction technology as discussed in this phase. These were mainly evident from
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the words: “technologie”, “shakespeak”, “sendstep” and “smart”. These technologies
were to be used by the teacher while interacting with the learner, which was evident
from the word “docent”, which means “teacher” in English. Therefore, some of the
words in the cluster when compared with the annotations gave the meaning of the
topical theme. Similarly, Topic 2 can be elaborated based on “team”, “foto”, “rol”,
“moodl” and “slecht”. Topic 2 refers to the use of moodle for assignments, making a
photo of the post-its using the phone. This topic cluster also captured bad (“slecht”)
teams, ideas and overview roles (“rol”) per student. The last topical cluster, Topic
3, mostly focused on the use of red cards (“rod”, “kaart”) and learning technology
(“leertechnologie”).

When we analysed the turn taking of different roles during the red phase, we found
that the TEL LA advisor and the teacher had the most exchange of turns between
them. Therefore, to further explore their roles and the usage of the words, we
analysed the bigrams (two consecutive word combinations) of the words. Tables
3.2 and 3.3 show the bigrams ranked from high to low tf-idf ranks and low to high
tf-idf ranks, respectively. The tf-idf ranking tended to give a higher rank to bigrams
that were used rarely and low ranks to bigrams that were used often. Therefore,
from the tables, we can observe that “smart shakespeak”, “fysiek elkaar” and “goed
powerpoint” were some of the top-ranked bigrams because they occurred rarely, and
likewise, we also observed the low-ranked bigrams, which occurred frequently. This
summarized the technology-related topics that were supposed to be discussed and
also looked similar to the above topics computed by LDA. Similarly, Tables 3.4 and
3.5 show the top-ranked and bottom-ranked bigrams respectively based on the tf-idf
ranking for the teacher.

(a) Topic 1 (b) Topic 2 (c) Topic 3

Figure 3.9 Topic clusters as word clouds in the red phase.

Table 3.2 Bigrams of the TEL LA advisor with high tf-idf ranking (i.e., bigrams rarely used).

Phrases (Original in Dutch) Translated into English

smart shakespeak smart shakespeak

fysiek elkaar physically each other

goed powerpoint good powerpoint
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Table 3.3 Bigrams of the TEL LA advisor with low tf-idf ranking (i.e., bigrams frequently
used).

Phrases Translated into English

mobile phone mobile phone

poster dieter poster dieter

phone gebruiken phone use

maken poster make poster

gebruiken foto use photo

Table 3.4 Bigrams of the teacher with high tf-idf ranking (i.e., bigrams rarely used).

Phrases Translated into English

zekering interaction certain interaction

foto maken make photo

blok boos block angry

Table 3.5 Bigrams of the teacher with low tf-idf ranking (i.e., bigrams frequently used).

Phrases Translated into English

mindmap maken make mindmap

maken posters make posters

posters rol posters role

samen denkt think together

We wanted to see the relationship between these words and phrases used by the two
speakers (with the help of knowledge graphs as in Figures 3.10 and 3.11) between
whom most turn taking happened, i.e., the TEL LA advisor and the teacher. The
green nodes show the subject and object, and the red links are the verbs or verb
phrases. Although this is an interesting way to show the relationship between spoken
text, it sometimes was difficult to understand the knowledge graph because of the
accuracy of the sentence segmentation in the text corpus. Furthermore, we did
not necessarily see the strength of the words (i.e., how often the words had been
used) and the strength of the links (i.e., how often the two- or three-word phrases
had been used) between these words. Therefore, we moved to the construction of
a co-occurrence matrix that showed the strength of the words and also the links
between words.
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Figure 3.10 Part of the knowledge graph of the teacher in the red phase (zoomed in).
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Figure 3.11 Part of the knowledge graph of the TEL LA advisor in the red phase (zoomed in).

When there is a huge text corpus, then visualizing these relationships from a co-
occurrence matrix is easier when it is displayed as a social network by using graphs
with nodes and edges (as in Figure 3.12), where each node shows the word and
its frequency reflected by the node size and the link between the nodes, i.e., the
edges show the strength of the words co-occurring in the same sentence as the edge
thickness. This visualization is interactive where we can select a node in the graph
and highlight that node along with its neighbours. This will be helpful to get an
overview of the richness of the conversations and the interaction patterns of different
roles.

Moving a step further, we show a portion of the graph where the node size is
proportional to the betweenness centrality, which is a better measure than the
frequency of the word. Betweenness centrality shows how often a node (or word)
acts as a bridge node (or a node that has more control over the network). Another
centrality measure that can be a good indicator of the influence of a node (or word)
is eigenvector centrality. Therefore, a node with a high eigenvector centrality score
must be connected to many other nodes who themselves have high scores. Table 3.6
shows an overview of the comparison of the word frequency in each utterance and
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different centrality measures for the red phase. Figure 3.13 shows the connection
between some words in the network graph where the node size is proportional to
betweenness centrality value of that node. “Goed” had the highest betweenness
centrality, and upon highlighting it, it can be seen that it is connected to “team”,
which has the second highest betweenness centrality. The connection value between
them is one, and the connection value between “goed” and “poster” is two. Therefore,
good and poster co-occurred more in a sentence than good and team in the red
phase. Out of that, “good” and “poster” as words were used by the TEL LA advisor,
and “team” was not used by the TEL LA advisor at all. From Figure 3.7, it is clear
that “team” was used by the teacher only in the red phase and by no other roles.
Therefore, the purpose of these examples was to show that these graph networks can
be a useful way to visualize the word importance, strength and usage by different
roles during collaboration.

Table 3.6 Top 5 words with frequency-wise ordering, betweenness centrality (BC)-wise order-
ing and eigenvector centrality (EC)-wise ordering in the red phase in decreasing
order. The English translation of the Dutch processed words is in the brackets.

Frequency BC EC

goed (good) goed (good) mak (make)

mak (make) team (team) poster (poster)

moodl (moodle) gebruik (use) goed (good)

gebruik (use) technologie (technology) rol (role)

idee (idea) rol (role) allerlei (all kinds of)

If EC is seen in Table 3.6, then “mak” and “poster” are the two words with the highest
values of EC, which means that they are influential. If we refer back to the frequently
occurring bigrams in Tables 3.3 and 3.5, then “maken poster(s)” was one of the
common ones for both roles who occupied most of the conversations in the red phase
as computed from the frequent exchange of turns between them. This could be one
of the reason for the high EC value. “Technologie” (“technology”) is in the top five
of the betweenness centrality values in Table 3.6 even though it was not in the top
five of frequency or EC, which was not surprising. This was because this red phase
was about technology, and it was certain that the keyword technology would have
more control over the network of words. Therefore, viewing the words, connecting
words and the strength between them from the perspective of centrality could be
interesting to discover latent relationships in the spoken conversations.

Thus, in this study, we took a computational approach for prototyping our technical
set up and advancing towards automatic collaboration analytics.
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Figure 3.12 A sample social network (or network graph) of the words of the TEL LA advisor
(shown as rectangles in yellow when highlighted) along with the whole red phase
conversation (all other roles are shown as circles in blue when highlighted).

Figure 3.13 A part of the network graph with the highest betweenness centrality node
(“goed”) highlighted along with its neighbouring nodes.

3.5 Discussion
First, with the help of RQ 1: “What co-located collaboration indicators have been
detected from group speech data in past studies?”, we found that most studies are
on non-verbal audio indicators (e.g., total speaking time, pitch). Most previous
studies on co-located collaboration (CC) focused on spectral and temporal audio
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indicators (Bassiou et al., 2016; Lubold and Pon-Barry, 2014). These indicators are
less obvious to understand or denote what is happening during collaboration as
compared to verbal audio indicators (or content of the conversation). Sometimes,
depending on the cultural background of a group member, the tone of the voice can
vary. Therefore, the tone of voice can be a good or bad indicator of collaboration
depending on the background. On the other hand, taking the example of “what” of
the conversations, it is more overt in most of the circumstances irrespective of the
background. The reason for most studies being heavily inclined to the non-verbal
audio indicators of collaboration could be due to the lesser maturity of automatic
speech recognition (ASR) systems, making it difficult to transcribe the conversations.
Of late, with the advent of different ASR systems like Google speech-to-text, it has
become much easier to convert speech to text with high accuracy. Upon expanding
the literature, we found very few studies (e.g., Chandrasegaran et al. (2019); Huber
et al. (2019)) on verbal audio indicators of collaboration in a CC context. These
studies were lab based and mostly focused on getting a representative high-level
overview of the conversations as topical word clusters instead of examining the
richness of the linkages among the words in the conversation.

To address this, we answered RQ 2: “What collaboration analytics can be employed
to analyse group speech data from co-located collaboration automatically?”. For this,
we built a technical set up and conducted a field trial where we recorded sessions
of a board game where people had to collaboratively design learning activities and
each player was assigned a specific role to play beforehand. With the help of this
collaborative task, first, we had an exploratory understanding of the collected audio
data set. Then, we visualized the relationship between these words, apart from
the representative topic modelling (which are certain representative word clusters)
done in the past (Chandrasegaran et al., 2019). First, we understood the different
bigram (or two consecutive) word phrases and made a distinction between some
of the most occurring bigrams and least occurring bigrams. We did this in one
phase of the CC task, which was more inclined towards the technology for two
roles, i.e., the TEL LA advisor and teacher, because they had the most exchange of
turns during that phase. We thought this could help us uncover the main bigrams
to understand the contribution of dominant turn-taking roles in that phase. Even
though bigrams showed a representative collection of two consecutive word phrases,
it was still difficult to understand how the conversations happened and what were
the influential words (measured by eigenvector centrality), as well as what were
the most controlling words (measured by betweenness centrality), which could
be shown using different centrality measures, as also done in the past (Das et al.,
2018). To understand this further, in addition to visualizing the strength of the
bigrams and longer word phrases, we plotted the social network graph (as done
earlier in online settings (Xie et al., 2018)), which was interactive and made it
easy to select a particular node and highlight its neighbours. This network graph
made it easier to understand the contribution of individual roles in the group
conversation. The strength of the link between words (measured by how often they
co-occurred in a sentence) along with their use by different roles helped to capture
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both word-level and role-level interaction, which can be a simplification approach to
understand a huge text corpus. The highlighting, interactive feature of the tool was
also purposefully built to reduce the information overload and only focus on that
particular selected node (or word) and the neighbours automatically highlighted.
Besides the visualization and its design choices, which were fully automated, during
pre-processing, some degree of human involvement was necessary for sanity checks,
which is explained in detail in the next section (under Challenges and Limitation).

Now, the next obvious question is: “What is the way forward once we have this
technical set up ready and a tool ready to be used in different settings?” The first
step for us is to use this across the other sessions for which we collected audio
data and see if we can find some recurring themes. We also want to add further
enhancements (as additional modules) and refine the visualizations by involving the
two main stakeholders (i.e., group members and the person managing the CC task)
for whom this was made. We want to understand the turn-taking patterns between
roles further and how the conversation evolves around these turn-taking patterns.
For now, it is a post hoc group collaboration analytics tool. To take it a step further,
it would be interesting to add a module to detect the quality of collaboration. One
possible step can be to compute the cosine similarity distance by comparing the text
vectors of each role as computed by this technical set up to the expected contribution
of the roles. This can give an estimate of how aligned the conversations are to the
expected contribution for that role and an estimate of the collaboration quality if
we can quantify the cosine similarity distance as a quality measure. Therefore, to
proceed in this direction, we need to bootstrap the results of all these sessions to
build models of different roles along with a human to form some expected standards
(or words they would use) for each role during the CC task.

Therefore, for this article, our main contribution was twofold: identifying the gaps
of the current co-located collaboration (CC) quality detection approaches from
audio data and making a starting step towards an automatic holistic collaboration
quality detection technical set up with the prototyping of our set up in the context
of a CC task. This was a technical article stressing the different technological
approaches (the coding details of which can be found on GitHub (https://bit.
ly/autocollabanalytics, last accessed on 30th April 2021)) to move towards
automatic collaboration analytics right from audio data collection to generating
meaningful visualizations.

3.6 Challenges and Limitations
There are many challenges. First, architectural challenges are full automation,
the accuracy of speaker diarization and the accuracy of speech to text. During
speaker diarization, sometimes, labels of roles were misplaced, which were manually
corrected. Next, there are challenges in processing and analysing the data, which are
largely dependent on the accuracy of the speech to text, which we will explain below.
The unstructured text data obtained from audio are much different than the data
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obtained from any online forums. Therefore, unstructured text data generates much
noise, which to some extent can be structured by sentence segmentation. However,
sentence segmentation working on only spoken text without punctuation marks
or delimiters can cause sentence boundary detection problems. Another challenge
in text processing is to correct the names, which were most of the time wrongly
transcribed. For example, “moodle” was wrongly transcribed to “moeder”, and we
had to manually fix this in the corpus. Therefore, when studies are in-the-wild
without a controlled lab environment, then there are more chances for natural,
unstructured conversations, which will need cleaning and structuring before analysis
can yield meaningful results. The stop word corpus available to the algorithm did not
remove all the contextual stop words that were not relevant for this discussion. We
also needed to manually remove some contextual stop words like some action verbs
depending on their importance in our context. When we lemmatized and stemmed
the words, then the lemmatizer for Dutch text was not accurate enough because
of its lesser usage and popularity compared to English. Therefore, we needed to
manually correct some words, which could be seen in blue phase when “groep” and
“groepjes” were not reduced to the same lemma as “groep”. The annotation process
was time consuming.

The limitations in terms of automation can be summarized from the challenges. We
needed the help of a human to pre-process to some extent for cleaning the corpus,
the sanity check on the names transcribed and to make sense of the visualizations
with the help of annotations. Although we are advancing towards automatic collab-
oration analytics, we need to eliminate other bottlenecks, especially to reduce the
dependence on humans to as little as possible.

3.7 Conclusions and Future Work
First, we listed the indicators of collaboration obtained from the audio modality in
the literature. We found two broad categories: non-verbal audio indicators (such
as temporal, spectral audio features, total speaking time, overlap of speech) and
verbal audio indicators (such as the content of the conversation, i.e., the spoken
words). There have been many studies on the first category, but very few studies
on the second category of analysing the content of the conversation. We found that
with the maturity of automatic speech recognition systems, recently, analysis of the
content of the conversations has picked up pace. Most studies analysing the content
of the conversation looked at the high level topics and were lab based.

Therefore, we took a step further to build a technical set up and conducted a field trial
to analyse the richness of natural unstructured conversations and the strength of the
links between these words and phrases used in the conversation context, and thus,
we prototyped the tool to move towards automatic collaboration analytics. Here, we
analysed the conversations during a board game while designing a learning activity
where group members with different roles (such as student, teacher, TEL LA advisor,
study coach) interacted with each other. We found different interaction patterns
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between the teacher and the TEL LA advisor by analysing the word-level and phrase-
level interaction during the technology related discussion phase of one collaboration
session. Even though we were moving towards automated collaboration analytics,
we found limitations in terms of automation with speaker diarization and data
pre-processing.

As mentioned in the Discussion, we want to enhance the technical set up further by
understanding the conversations around these turn-taking patterns between different
roles. The major outlook for the future will be to measure the quality of collaboration
and give feedback. Due to COVID-19, we are also looking into adapting our approach
to a remote (or online) setting from a face-to-face setting. Because of our modular
approach, it will be easier to adapt everything in the technical set up except the
speaker diarization. We will not need speaker diarization in an online setting, and it
will be much easier to get different clean audio streams from each group member in
an online setting.
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Chapter 4

Towards Collaborative Convergence:
Quantifying Collaboration Quality with
Automated Co-located Collaboration
Analytics

Colocated collaboration (CC) takes place in physical spaces where group members
share their social (i.e., non-verbal audio indicators like speaking time, gestures)
and epistemic space (i.e., verbal audio indicators like the content of the conversa-
tion). Past literature has mostly focused on the social space to detect the quality
of collaboration. In this Chapter, we focus on both social and epistemic space with
an emphasis on the epistemic space to understand different evolving collaboration
patterns and collaborative convergence and move towards quantifying collaboration
quality using the set up in Chapter 3. First, we define collaboration quality using
audio-based indicators in a short literature review. Then we conduct field trials by
collecting audio recordings in 14 different sessions in an university setting while
the university staff collaborates over playing a board game to design a learning
activity. This collaboration task consists of different phases with each collaborating
member assigned a pre-fixed role. We analyze the collected group speech data using
the set up built in the previous chapter to do role-based profiling and visualize the
collaboration analytics with the help of a dashboard.

This chapter is based on:

Praharaj, S., Scheffel, M., Schmitz, M., Specht, M., and Drachsler, H. (2022). Towards
Collaborative Convergence: Quantifying Collaboration Quality with Automated Co-
located Collaboration Analytics. In Learning Analytics and Knowledge Conference,
ACM, doi: 10.1145/3506860.3506922.
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4.1 Introduction
Collaboration is one of the four important 21st-century skills (Kivunja, 2015). Col-
laboration is said to occur when two or more persons work towards a common goal
(Dillenbourg, 1999). The recent interest on co-located (or face-to-face) collaboration
(CC) is because of the ubiquity of the use of sensors and rise of multimodal learning
analytics (Praharaj et al., 2021a; Di Mitri et al., 2018b). “CC takes place in physical
spaces where the group members share each other’s social and epistemic space.”
(Praharaj, 2019, p.1, emphasis added). The social space comprises the non-verbal
indicators of collaboration (e.g., non-verbal indicators from speech such as turn
taking (Kim et al., 2015), total speaking time (Praharaj et al., 2018b) and non-verbal
indicators from video such as gestures and postures) and the epistemic space com-
prises the verbal indicators of collaboration (e.g., the actual content of discussion
obtained from the group audio data (Praharaj et al., 2021b), log data about content
of discussion if any) (Praharaj et al., 2018b). The indicators of collaboration vary
depending on the context of the collaboration and these indicators help to determine
the quality of collaboration in most of the cases (Praharaj et al., 2021a, 2018a). This
can be attributed to the differing goals of collaboration and the group characteristics
(which both can be collectively grouped under the parameters of collaboration)
(Praharaj et al., 2021a). Majority of studies on CC in the past focused on the audio
indicator type (Praharaj et al., 2021a).

The quality of CC has been detected in the past using various indicators of collab-
oration derived from audio. For example, non-verbal audio indicators like prosody
of sound such as pitch, spectral property, tone and intensity (Bassiou et al., 2016),
total speaking time of group members (Bergstrom and Karahalios, 2007; Bachour
et al., 2010), interruptions (Oviatt et al., 2015), overlap or no overlap duration of
speech (Bassiou et al., 2016); speaking time of a group member combined with
the attention of other group members measured by their eye gaze (Terken and
Sturm, 2010); linguistic features such as pronouns, sentence length and prepositions
(Schneider and Pea, 2014a, 2015); verbal features like the keywords used, topics
covered (Chandrasegaran et al., 2019), dialogues (Huber et al., 2019). Contrary to
a majority of studies focusing on non-verbal audio indicators, a handful of studies
used the verbal audio indicators (or the epistemic space) during CC. The verbal
audio indicators are more overt as compared to the non-verbal audio indicators
in-order to understand the collaboration process (Praharaj et al., 2021b). For ex-
ample, "talk traces" (Chandrasegaran et al., 2019), “meeter” (Huber et al., 2019)
used verbal audio indicators of CC for the analysis. In “talk traces”, Chandrasegaran
et al. (2019) did topic modeling during the meeting and then showed the topic
cluster visualizations as feedback by comparing with the pre-decided meeting agenda.
The topic modeling barely scratches the surface of CC analysis based on a collec-
tion of representative keywords which is not rich enough to understand the group
conversations in-depth. It does not show the proper linkage between these words
and the rest of the conversation. This can lead to a loss of holistic meaning of the
conversations and a possible under representation of certain topics when observed
contextually. The “meeter” study (Huber et al., 2019) made dialogue classification of
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the group members based on a lab study to measure information sharing and shared
understanding while generating ideas. The performance (or quality of collaboration)
was measured based on the number of ideas the group members wrote down on
the cards after quality check. They did not find significant effects of information
sharing and shared understanding on the quality of collaboration. So, these con-
trolled studies on epistemic space of collaboration are too abstract in either choosing
representative keyword clusters or few select dialogues’ categories which do not
affect the collaboration quality.

Similar to the partially automated analysis of epistemic space during CC, there has
been a battery of works (Jeong and Chi, 2007; Teasley et al., 2008) on manually
operationalizing the quality of collaboration based on in-depth analysis of the content
of the conversations (using convergence as a measure) mostly in controlled settings
using collaboration scripts and jigsaw scripts. Different types of convergence have
been defined in the literature encompassing CC. Knowledge convergence in the
context of collaboration has been defined as the increase in common knowledge
(i.e., knowledge that all the collaborating group members possess) (Jeong and Chi,
2007). Main goal of knowledge convergence is learning together (Teasley et al.,
2008). Similarly another convergence measure is cognitive convergence which is
composed of the different concepts that can be used to describe important processes
underlying successful collaboration (Teasley et al., 2008).

To this end, we have the following research questions:

RQ1 What co-located collaboration indicators have been identified from group
speech data in the related literature?

RQ2 How can co-located collaboration indicators from group speech data automat-
ically be analyzed?

RQ3 How to visualize quality indicators of collaboration from group speech data?

To answer RQ1, we do a brief literature review in Section 4.2 to get a background
overview. Then, to answer RQ2 and RQ3, we design an experimental set up where
we collect audio data of university staff (pre-assigned with different roles) collabor-
ating while designing learning activity using a board game in the university in 14
different sessions. We not only discover emerging role-based collaboration patterns
longitudinally across the sessions but also discover collaboration patterns in the
session itself. For this analysis, we used automated analytics by visualizing both the
epistemic and social space using different methods (as described in Section 4.3).
These methods include the network graph analysis to find rich interconnections of
the discussion, how closely each keyword is related to each other and also under-
stand the speaking time and turn taking patterns of group members’ with different
roles. Moreover, we analyze the collaborative convergence patterns in a session
automatically motivated by the past manual works on convergence (Jeong and Chi,
2007; Teasley et al., 2008). In the context of our study, we define collaborative con-
vergence from 2 different perspectives: 1) Group level convergence - Convergence
between members during collaboration with respect to the expected objectives of
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the discussion and 2) Individual level convergence - Convergence of group members’
role during collaboration with respect to the expected role-based objectives before
collaboration. So, instead of analyzing the pre-knowledge and post-knowledge after
collaboration of each group member (as has been done in the past), we analyze how
the major influential role-role interactions (detected from turn taking and speaking
time) contribute to the group’s collaboration task temporally across the session by
understanding the different conversation patterns. We show these visualizations
using a dashboard (in Section 4.4) and then discuss the future research that can be
done on this dashboard (in Section 4.5). Finally, we discuss our findings (in Section
4.6) with the limitations and conclude in Section 4.7.

4.2 Co-located Collaboration Indicators from Audio
Majority of past works used audio indicator type to determine the quality of collabor-
ation (Praharaj et al., 2021a). The simplest audio indicator of collaboration was total
speaking time (Bergstrom and Karahalios, 2007; Bachour et al., 2010). The total
speaking time of each group member was reflected back to them by a coloured LED
light display (Bachour et al., 2010) and concentric circles visualization (Bergstrom
and Karahalios, 2007) on the smart table during group meetings. It was found that
this helped to regulate the equity of participation during a group conversation. The
dominant speakers spoke less and the not so dominant speakers started to speak
more. It was later found that the group that had better equity of speaking time had
better quality of collaboration as measured by a post-test. Besides, more frequent
speaker changes (i.e., turn taking) with overlap of speech (Kim et al., 2015) indicates
a good quality of collaboration. Previous research also indicates that overlap in
speech is associated with positive group performance (Çetin and Shriberg, 2006;
Dong et al., 2009).

Other non-verbal audio indicators used to detect collaboration quality were both
group based (i.e., solo duration, overlap duration of two persons, overlap duration
of all three persons) and individual based (i.e., spectral, temporal, prosodic and
tonal) (Bassiou et al., 2016). These indicators along-with manual annotation were
fed to a support vector machine classifier to compute the collaboration quality. Simil-
arly, speaker-based indicators like the intensity, pitch and jitter were used to detect
collaboration quality among working pairs (Lubold and Pon-Barry, 2014). When
two members in a group are speaking at different amplitude but exhibiting the same
pattern of their speech (e.g., the rise and fall of average pitch of both members are
similar to each other) then they are showing a high level of synchrony (Lubold and
Pon-Barry, 2014). Lubold and Pon-Barry (2014) found a positive correlation between
synchrony and rapport (obtained by comparing perceptual rapport from annotators
and self-reported rapport) during collaborative interactions. A good rapport between
group members can enhance the collaboration (Chapman et al., 2005). As seen from
the examples of past studies, the indicators of collaboration are dependent on the
context. This can be attributed to the differing goals and fundamental characteristics
or parameters (such as group behaviour, interaction, composition) of the group in
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each collaboration context. “The parameters of collaboration are primary aspects
such as team composition (e.g., experts, initiators or roles of being initiators), beha-
viour of team members (e.g., dominance, rapport, conflict), types of interaction (e.g.,
active or passive), behaviour during collaboration (e.g., knowledge co-construction,
reflection, coherence, misconception, uncertainty)” (Praharaj et al., 2021b, p. 4).

Additionally, Oviatt et al. (2015) tracked the speech of students during collaborative
maths problem solving. They found that overlapped speech is an indicator of con-
structive problem-solving progress, expertise and collaboration. They used both the
number of overlap in speech and the duration of overlap in speech. Luz (2013) used
the non-verbal audio indicators like speech, silence, pause, transition from group
speech to individual speech as indicators to predict performance and expertise on a
Maths dataset corpus of groups during collaborative problem solving. Using these
non-verbal indicators as features, they trained a model to predict the expertise of the
group members and their collaborative performance. They found that these features
were able to predict the expertise but not the group performance. Spikol et al.
(2017b) used audio level and other non-verbal indicators to estimate the success
of collaboration activity (i.e., measured by the human observers) while performing
open-ended physical tasks around a smart furniture. They found that audio level
alone is sufficient to predict the quality of collaboration with high accuracy.

These non-verbal audio indicators studied above are less overt as compared to the
verbal audio indicators which analyze the epistemic space of CC. With the rise of
automatic speech recognition (ASR) techniques, a handful of studies (for instance,
"talk traces" (Chandrasegaran et al., 2019), “meeter” (Huber et al., 2019)) took into
account the content of collaboration. In “talk traces”, Chandrasegaran et al. (2019)
did topic modeling during the meeting and then showed the topic clusters (shown
as a representative overview of a group of keywords) as a visualization feedback by
comparing with the agenda of the meeting. Although topic modeling shows a repres-
entative overview of the different topical word clusters and their evolution during
collaboration, it does not show the relationship of the words with each other and
their contextualization in the whole conversation. This can lead to a loss of holistic
meaning of the conversations and a possible overlooking or under representation of
certain topical themes. In “meeter” (Huber et al., 2019) the dialogues of the group
members were categorized based on a controlled study to measure information shar-
ing and shared understanding while generating ideas. The collaborative task was
based on three open ended fixed topics where group members needed to brainstorm
and share their ideas in a short session of 10 minutes. Collaboration quality was
measured by the number of ideas generated. No significant effects of information
sharing and shared understanding was found on the quality of collaboration. So,
most of these studies give an abstract overview of the conversations.

Prior to the prevalence of the ASR techniques, there have been some manual studies
on in-depth analysis of the content of conversations during CC in controlled settings
using collaboration scripts (which describe certain rules for collaboration) and jigsaw
scripts (which are individual pieces of knowledge not all identical to each other
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Table 4.1 Indicators of CC and their operationalization of collaboration quality

Parameters Indicators Operationalizing
collaboration
quality

Space
tracked

References

Roles (one leader and
other non-leaders)

Topics
covered de-
tected from
keywords,
frequently
used
keywords
and phrases

Topical closeness
to meeting agenda,
proximity of com-
monly used words
and phrases to the
roles

Epistemic Chandrasegaran
et al. (2019),
Praharaj et al.
(2021b)

Dominance Total speak-
ing time

Higher equity of
total speaking time
means less domin-
ance in the group
and higher quality
of collaboration

Social Kim et al.
(2008),
Bachour
et al. (2010),
Bergstrom and
Karahalios
(2007), Pra-
haraj et al.
(2019)

Active participation Turn taking
frequency

More frequent turn
taking changes
mean higher active
participation and
better quality of
collaboration

Social Kim et al.
(2015)

Expertise Overlapped
speech

Overlap in speech
is an indicator
of constructive
problem solving,
expertise and good
CC quality

Social Zhou et al.
(2014), Oviatt
et al. (2015)

Rapport Synchrony in
rise and fall
of average
pitch

Higher synchrony
in rise and fall
of average pitch
indicates higher
rapport and bet-
ter collaboration
quality

Social Lubold and
Pon-Barry
(2014)

Knowledge co-
construction

Knowledge
convergence
(i.e., the
amount of
shared know-
ledge in the
group),
Cognitive
convergence

Increase in con-
vergence (i.e.,
increase in the
shared knowledge)
implies increase
in collaboration
quality

Epistemic Jeong and Chi
(2007), Teasley
et al. (2008)

and shared with all group members so that each member has a unique knowledge
piece script). This has been possible by conceptualizing convergence from different
perspectives like knowledge convergence (Jeong and Chi, 2007) and cognitive
convergence (Teasley et al., 2008) (i.e., all concepts used to describe important
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processes underlying successful collaboration). Convergence has been defined as the
increase in common knowledge (i.e., knowledge that all the collaborating members
possess). This was possible by a pre-test and post-test and comparing the knowledge
gain of the group members. So, the main goal of knowledge convergence is to
develop better shared mutual understanding and learning together (Teasley et al.,
2008). This effectively improves collaboration.

Table 4.1 gives an overview of some of the studies on detecting the indicators of
collaboration from audio and their operationalization to measure the quality of
collaboration.

In the scope of this work, we focus on field trials in a real world setting to semantic-
ally understand the content of discussion during collaboration by analyzing and
visualizing the epistemic space with some emphasis on the social space too.

4.3 Experimental Set up
In this section we describe our experimental context, set up, data collection, pro-
cessing and the methods used for our experiments, data analysis and visualizations.

4.3.1 Experimental Context
The collaboration task was to design a learning activity using the Fellowship of
Learning Activity and Analytics ((FOLA)2) 1 game. We used this task to collect
the audio recordings. It is a board game (Schmitz et al., 2019) (e.g., of an online
version of the game 2 currently under active development) played face-to-face with
different themed cards and roles that is used in workshops to create awareness
of the connection between learning analytics and learning design. It can also be
used as an instrument to collect indicators when planning learning analytics already
while designing learning activities. This game was used in 14 face-to-face sessions in
between September and October 2020 (with each session varying between 60-90
minutes) among different university staff. The collaboration task in each session
had different phases which were colour-coded based on the cards supposed to be
used in that phase (as blue, red and yellow) 3. Each group member performing the
task was assigned different roles. The blue (card or) phase (varied in length from
28 to 57 minutes across the sessions) defines the steps in the learning activity. The
red phase (varied in length from 4 to 13 minutes across the sessions) or Learning
Enhancing Technology cards are part of the step in the game where we search for
enhancements of the interactions using technology such as sensors, virtual reality,
etc. The yellow phase (varied in length from 10 to 30 minutes across the sessions)
defines what we want to know on the interaction or within the learning activity. For
instance, it can be engagement or how students take initiative. To steer the group
conversations, there were also prompts on each card. A demo from one of the game

1http://www.fola2.com/
2https://game.fola2.com/
3The phases and cards mean the same and have been used interchangeably henceforth
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Figure 4.1 A game session demo

session is shown in figure 4.1.

We recorded the conversations during these sessions (after gathering signed informed
consent from the participants) using clip-on microphones attached to each group
member along-with their respective audio recorder which recorded and stored their
conversation locally in that recorder. The conversations were in Dutch. Each group
member was pre-assigned roles during the conversation: Game master, all advisors
(consists of the “technology enhanced learning and learning analytics” advisor and
“educational” advisor), study coach, teacher and learner (or student). These roles
resemble a real life student, teacher, study coach or advisor while the game master
is the game moderator who also helped to steer the group conversations. The roles
were also played by real life advisors (age varied from 36–64 years, experience varied
from 1–20 years and gender consisted of 10 males and 8 females), teachers (age
varied from 28–64 years, experience varied from 1–40 years and gender consisted
of 13 males and 1 female), learners (age varied from 19–27 years, experience
varied from 0.16–9 years and gender consisted of 13 males and 1 female) and study
coaches (age varied from 28–56 years, experience varied from 0–14 years and gender
consisted of 12 males and 2 females).

4.3.2 Methods
Our architecture for data collection, processing and analysis was based on our
previous work (Praharaj et al., 2021b). We followed a similar data collection, pre-
processing and processing approach (as in Praharaj et al. (2021b)) only with a minor
exception of using Amberscript 4 for speech to text transcription instead of directly
using Google Speech to Text. Amberscript uses Google Speech to Text behind the
hood but provides a much cleaner user interface to play with the transcribed data
and make minor modifications when needed.

4https://www.amberscript.com/en/
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Figure 4.2 A sample annotation

After data processing (where we clean the dataset and make it machine understand-
able), we find that 4th and 13th session needed to be removed because of poor
quality of recordings and transcriptions. Then we move to the data analysis and
visualizations with the 12 sessions. First, we visualize in an exploratory manner to
see the frequently used keywords (in the processed text model obtained from speech)
by different group members playing different roles by using frequency analysis of
the common keywords used in different phases and sessions. To make sense of the
visualizations and understand the context of the conversations, we take the help of
the game master to generate summarized annotations for each phase (one from each
session theme) in English (for example, a sample annotation can be seen in figure
4.2).

To go in-depth into the influential role-role exchanges, we explored the social space
by visualizing with a network graph the speaking time of the group member shown
in terms of node size and the turn takings shown in terms of the edges between the
nodes. The thickness of the edges is directly proportional to the number of turn
takings between the different roles. A sample network graph can be seen in figure 4.3
in the Results section. Then, we analyzed the words used during the conversations
by these roles with the help of bigrams (consecutive two word phrases) and ranking
them by tf-idf to check how often the bigrams have been used. tf-idf ranking of
the bigrams gives an overview of the frequently (with lower tf-idf ranking) and
rarely (with higher tf-idf ranking) used bigrams. We used bigrams over trigrams
(consecutive three word phrases) because they were more informative in our context.

To analyze the epistemic space (consisting of these content of the conversations),
we built a co-occurrence matrix which shows the strength of the different word
combinations (i.e., how often certain word combinations occur together). Then, we
use this co-occurrence matrix to build an interactive network graph to visualize (as
shown in figure 4.12) the frequency of the different words (denoted by node size)
along-with how many times these words co-occur together (denoted by the edge
thickness). To make the network graph visualization easier to play with and intuitive
for the end user, we have built an interactive feature which helps to highlight a
specific node and its neighbours in the graph by selecting that specific node or
searching for that specific node. Finally, we have combined both these social and
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epistemic components into a single dashboard to get a better understanding of the
collaboration sessions. Further, we also explore different centrality measures in the
graph network to understand the importance of different keywords used contextually.
Moreover, for the analysis of the roles and their interactions, we do not take into
account the contribution of the game master as he was only a moderator and steering
the discussion. In the next section we describe our findings.

4.4 Results
As we described before, we consider mainly 4 roles (i.e., all advisors, study coach,
teacher and learner) for the analysis of the conversations. In total we have 3 phases
(i.e., blue, red and yellow) in each session with a total of 12 sessions. First, we
observe the social space (as in Figure 4.3) which shows the speaking time and turn
taking of the group members and then we explore the epistemic space (as in Figures
4.7 and 4.12). Here, we describe our findings in three different sub-sections.

4.4.1 Convergence within a phase in a session
We have defined collaborative convergence in the Introduction in the context of
our study. It is defined from both group level and individual level. Group level
convergence is between members during collaboration with respect to the expected
objectives of the discussion and individual level convergence is convergence of group
members’ role during collaboration with respect to the expected role-based objectives
before collaboration.

To understand group level convergence, we take a simple example of one phase
(blue phase in this case) in a session (1st session in this case). The blue phase was
a conversation about the steps in the learning activity. If we compare Figure 4.7
and 4.8, when we observe “Belbin” keyword. Belbin team roles are actually nine
different team role behaviours that make a high performing team. We can see that
in the 1st 10 minutes of the blue phase (i.e., in Figure 4.7) only advisor, learner
and study coach uttered Belbin. But, in the first 20 minutes of blue phase (i.e.,
in Figure 4.8), the teacher also started to speak about Belbin. So, effectively the
group level convergence (i.e., shared utterance) increased with reference to a highly
relevant term (i.e., “Belbin” in this case). This implies an increase in the quality of
collaboration with respect to the group level task objectives because of an increase
in task related shared epistemic space. We can also observe a similar increase of
convergence with the inclusion of the teacher for the term “docent” (“teacher” in
English) across the first 10 and 20 minutes of the blue phase. Towards the end of the
conversation, many new terms like “reflecteer” (“reflect” in English) and “klassikaal”
(“classical” in English) came up to the top frequently occurring group (when we
compare Figures 4.7 and 4.8 with Figure 4.9 or 4.10). That conveys the change
in focus of the conversations initially from Belbin roles to later reflect on these
roles and also conversations about the classical discussion vs splitting in groups.
Similar to epistemic convergence, social convergence can be observed based on the
participation of different roles across every 10 more minutes slices of conversation
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Game Master

All Advisors

Study Coach

Teacher

Learner

Figure 4.3 1st 10 minutes social space (1st session blue phase)

in Figures 4.3, 4.4, 4.5 and 4.6 of the blue phase. The learner in 1st 10 minutes did
not interact with the study coach and spoke the lowest in terms of speaking time
(shown as the smallest node). Towards the end it developed a link with the study
coach because of turn taking exchange between them. So, both social and epistemic
space gives us a holistic understanding of the evolving conversations’ patterns within
the phase of a session.

Regarding individual convergence, rise of the individual role based words with
respect to the group can be considered as an increase in convergence. For example,
use of the “team” keyword improved a lot from first 10 minutes to the end of the
blue phase (as can be seen in Figures 4.7, 4.8, 4.9 and 4.10) with respect to its
usage by the learner and also in the whole group. These were mainly discussions on
how to form an ideal team, team focus and making a new team. Next, we move out
of one phase to get a high level overview of the conversations in one phase across
sessions using bigrams or phrasal analysis.

4.4.2 Overview of epistemic and social space of red phase across
all sessions

We obtained the relevant phase related bigrams (obtained from high and low tf-idf
rankings automatically) for individual roles in red phase across all the 12 sessions
considered for the analysis along-with the dominant role-role exchanges in each
session. The dominant role-role exchanges can be useful to get an insight into the
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Game Master

All Advisors

Study Coach

Teacher

Learner

Figure 4.4 1st 20 minutes social space (1st session blue phase)

Game Master

All Advisors

Study Coach

Teacher

Learner

Figure 4.5 1st 30 minutes social space (1st session blue phase)
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Game Master

All Advisors

Study Coach

Teacher

Learner

Figure 4.6 Full social space (1st session blue phase)
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Figure 4.7 Top 50 word utterance frequency in the 1st session blue phase in 1st 10 minutes
with roles
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Figure 4.8 Top 50 word utterance frequency in the 1st session blue phase in 1st 20 minutes
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Figure 4.9 Top 50 word utterance frequency in the 1st session blue phase in 1st 30 minutes
with roles
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Figure 4.10 Top 50 word utterance frequency in the full 1st session blue phase with roles

groups’ main conversations. The red phase was centered around conversation on
technologies that can enhance learning. So, we were interested to get an overall
idea of the red phase across all the sessions.

As expected many discussions were on different technologies to improve learning.
Concept map, smart screen, smart board, shakespeak (i.e., an interaction polling
system used for interactive lectures in the classroom, which can act as an interaction
booster), powerpoint, moodle for assignment, padlet and online collaboration were
different technological terms among many. The advisor consists of the “technology
enhanced learning and learning analytics” advisor who was expectedly dominant in
this technology phase across most of the sessions. The learner and study coach were
having conversations about “moodle” a lot for assignments. Some sessions focused
on surveys to collect user requirements, moved in the direction of statistics evident
from usage of statistics, histogram, graphics, manner in which data is collected, saved
and how feedback is given to reflect during the conversations. The other sessions
focused more on team composition, characteristics of students (i.e., extroverted
or not), collaboration environment and online collaboration. To understand the
conversation patterns in-depth, the network graph based dashboard described in the
next sub-section can be helpful.
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Figure 4.11 Screenshot of the dashboard with social and epistemic components

4.4.3 Dashboard encompassing the social and epistemic com-
ponents

Figure 4.11 shows the dashboard highlighting a node for all advisors in the red
phase in session 1. It has four main components. The social space shown by the
role network graph, the high level overview of the epistemic space shown by the
bar graph, the colourful network graph showing the interaction of a particular role
in one phase of a session and the search bar which helps to search and highlight
a specific node (which is also possible on clicking on that particular node). Now
we have different views for each phase and session with each view showing the
conversation of one role in the whole conversation network graph. This will make it
easier to compare two roles’ conversation patterns when they are seen side by side.
This dashboard can be scaled easily and is fully dynamic and interactive.

Figure 4.12 shows a zoomed in version of the advisor role among other roles with
different shape and colour. The colour and shape of the node helps in the distinction
of roles. The neighbours of each node (or in other words which words co-occur with
each other) are shown on hovering the mouse over the node. Similarly, the strength
of the words that co-occur (shown by the thickness of the edge) is also shown when
we hover the mouse over the edges. This graph helps us to understand the different
contextual keywords, how often they have been used, what are they associated with
strongly and weakly (measured based on the edge strength of the nodes).

To analyse the network graph in depth, we looked at different centrality measures
such as the betweenness centrality (BC) and eigenvector centrality (EC) of these
words. Betweenness centrality shows how often a node (or word) acts as a bridge
node, that is the number of times a node lies on the shortest path between other
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Figure 4.12 Zoomed in network graph highlighting a node of the advisor in yellow rectangles
and rest others in blue circles in red phase

nodes. This means that a node (or a word) with high betweenness centrality would
have more control over the network. Another centrality measure that can be a good
indicator of the influence of a node is eigenvector centrality. Therefore, a node
with a high eigenvector centrality score must be connected to many other nodes
who themselves have high scores. For example, in the red phase of the 1st session,
frequency wise four words in decreasing order were good, make, moodle and use.
But, BC wise it was good, team, use and technology, and EC wise it was make, poster,
good and role. So, this example proves that centrality measures can elevate the
ranking of even less frequently used words (i.e., team, technology and role in this
example) in that particular context.

4.5 Future research about the dashboard
So, we have built a generic dashboard to quantify collaboration quality based on
different collaboration indicators in the social and epistemic space. This dashboard
is useful to show how each role interacted during the collaboration task. Now, the
important question is: “Who would use it and why?”. This question will be answered
by understanding the needs of the dashboard design.

The design of the dashboard will be driven by the temporal needs (i.e., whether
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updated in real-time every few minutes or shown as a summary at the end of
collaboration) and the stakeholders (teacher or task moderator or the group members
themselves) who will be using it. To cater to the temporal needs, we need to
first differentiate what can be shown as an immediate formative feedback and
what can be shown as a summative feedback at the end of collaboration. To this
end, we need to do a qualitative study by interviewing different stakeholders to
identify the user requirements. This will give us an idea as to what type of feedback
is relevant for which stakeholder group and can be shown to them accordingly.
For example, this type of dashboard for a teacher (as the stakeholder) could be
useful to determine scaffolding strategies during collaboration and also planning the
collaboration sessions. For the group members’, it can be a useful tool to self-reflect
and adapt their collaboration accordingly.

Based on that we can also do design enhancements and modifications in the dash-
board using different visualization filters to capture and compare temporal role-based
snapshots. The customizability should be extended to the users using the dashboard.

4.6 Discussion
To answer “RQ1: What co-located collaboration indicators have been identified from
group speech data in the related literature?”, we do a short literature review where
we identify different indicators of CC quality from group speech data and define how
they have been operationalized contextually to measure the quality of CC. We find
that most studies (Bachour et al., 2010; Kim et al., 2008) in the past focused on
the analysis of the social space of collaboration and few studies (Chandrasegaran
et al., 2019; Huber et al., 2019) that focused on the epistemic space were abstract in
nature. We overcome this limitation in RQ2 by conducting field trials.

To answer “RQ2: How can co-located collaboration indicators from group speech
data automatically be analyzed?”, we conduct field trials in 14 different sessions (only
12 of which are later used for data analysis) where we collect the audio recordings.
The collaboration task was to design a learning activity with each group member
assigned a pre-fixed role (such as teacher, all advisors, study coach, learner and
game master) before collaboration. Each session had 3 different phases (i.e., blue,
red and yellow), each with different objectives. Here, we take the help of the already
defined indicators of collaboration quality in RQ1. We analyzed the collaboration
convergence (ie., increase in shared utterance of specific phase related keywords)
automatically as evolving conversations in a phase motivated by manual knowledge
convergence (i.e., increase in shared knowledge) and cognitive convergence studies
done earlier (Jeong and Chi, 2007; Teasley et al., 2008). We find that specific
keywords utterance frequency analysis for different roles helps in this regard to
understand the change in role-based conversation patterns with time. This is because
the more utterances we have in a specific phase related keyword, the more is its
usage in that context and hence, more importance. The convergence patterns help us
to understand how specific conversations were discussed by all roles or specific roles.
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Combined with the social space analysis (shown as role-role interaction network
graph), the holistic overview of how the conversations evolved can be obtained. This
helped us to quantify the collaboration quality. So, we do not categorize whether
higher or lower convergence is good or bad. We just show an approach to quantify
collaboration and categorizing is up to the context of collaboration. For instance, in
our study if there is higher convergence for on-topic conversations then it is good for
the quality of collaboration but higher convergence for off-topic conversations is bad
for collaboration quality. As we do not define fixed objectives before collaboration
and do not conduct a lab-based study, so it is quite open to interpretation.

To answer “RQ3: How to visualize quality indicators of collaboration from group
speech data?”, we build a dashboard encompassing both the social and epistemic
components. We use network graphs and bar graphs to show the role-role interaction
in both the social and epistemic space respectively. To understand the epistemic space
further in-depth, we build an extended interactive network graph to do role-based
profiling of the conversations during collaboration. This helped us to understand
which words have been frequently used (shown as node size) by different roles
and what are the strength of the word co-occurrence (i.e., how often multiple
words co-occur together). This network graph is an intuitive, interactive dynamic
representation which can reveal more information by mouse hover such as the
strength of linkage between keywords and the keywords connected to one. It is
a modified large scale network similar to online SNA (Xie et al., 2018) and better
than the abstract representation of topics (Chandrasegaran et al., 2019). We also
computed the centrality measures (Das et al., 2018) and found that graph centrality
measures convey richer information about the importance of less frequent keyword
in the context of the conversation. Finally, these visualizations are combined to
form a dashboard to analyze and understand evolving collaboration patterns, hence
compute the quality of the collaboration. Besides, the dashboard needs to be
customized in the future depending on the use-case and the stakeholders who will
use it as discussed above in the “future research about the dashboard”. This will
also determine whether the dashboard is updated every few minutes for real-time
feedback or given as a post hoc summative feedback.

So, our main contribution is twofold: 1) To provide definition of CC quality, 2)
understanding the social and epistemic space of collaboration with an in-depth
analysis on the content of the conversations using the network graphs and bar
graphs in a dashboard. To this end, we also detected convergence to quantify the
quality of collaboration, defined it in the context of our study and left this dashboard
as an open option for anyone to build and customize it further.

However, there are certain limitations in terms of the architecture, analysis and
the visualizations. The transcription needs human intervention to do sanity checks
especially when any names are concerned. The dashboard is now a generic version
which is information rich instead of being bereft of information. Even though it
provides a holistic view of the collaboration patterns, it is not suited for a specific
stakeholder group which can be modified further depending on their needs to make

108



4.7 Conclusions

it suitable for them. Finally, the network graph can be overwhelming when it is
generated for a long time duration where the number of nodes and edges can cause
overcrowding, clutter and the popular hairball problem in large network graphs.
This should be tackled while considering the dashboard design.

4.7 Conclusions
First we did a brief literature review to identify the indicators of collaboration quality
from group speech data and define the operationalization of the CC quality. Then,
we conducted field trials. Here, we analyzed and visualized the audio recordings
collected in 12 different sessions of a collaboration task of designing a learning
activity. We find this is a starting step in the direction of automated collaboration
analytics and feedback to understand co-located collaboration patterns and give
feedback. For this, we analyzed both the epistemic space (i.e., the content of the
conversations) and the social space (i.e., the speaking time and turn takings) to get
a holistic understanding of the evolving collaboration patterns and CC quality.

Apart from the simple analysis of the frequency of the keywords, we also analyzed
the richness of these conversations with an interactive network graph to understand
the contribution of each role in terms of what they spoke and how strongly a specific
keyword or phrase is related to each other. To understand the role-level contribution,
we explored the network graph and also different convergence patterns across a
phase in a session. We found that this can be temporally computed by finding the
shared utterance of the frequently used keywords among different roles and will
be helpful to quantify the CC quality. For visualizing the social space, we used
network graph to show the role-role interaction in terms of speaking time and
turn-taking. Finally, we built a dashboard which is made up of both the social and
epistemic components to analyze the emerging collaboration patterns and get a
holistic understanding of CC quality.
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The main objectives of the thesis are: 1) To describe the components used to define
and measure the quality of co-located collaboration (CC) including indicators (i.e.,
low level events like the total speaking time), indexes (i.e., the processes like the
equality of speaking time), task goals and parameters (i.e., the group composition
and behaviour during CC) that define the CC quality; 2) To develop a technical
prototype and test it with field trials to move towards automated collaboration
analytics; 3) To visualize the CC analytics and move towards quantifying CC quality.

The thesis approached these objectives in three distinct parts. Part I described the
definition for CC quality, and how quality is contextualised in certain scenarios
of collaboration. It also connects it to suitable feedback mechanisms to support
learners in collaboration. Part II described the prototyping of an automatic CC
analytics set up (using the definitions in Part I) where we built an architecture for
data collection, processing, analysis, visualizations and then tested it in a field study
based on a specific CC task in a university setting. Here, we primarily focused on
the audio-based indicators of CC. In Part III, we used the set up built in PART II
to move towards quantifying the quality of collaboration based on the content of
the conversations and how group members speak and then visualized this analytics
using a dashboard.

This concluding chapter first summarises and discusses the main outcomes from
these three parts as a mix of observations and recommendations; then addresses the
limitations of the presented research as well as implications for the field and future
research.

Observations and Recommendations
Based on our findings in three parts of the thesis, we derive these observations and
recommendations for the CC analytics and the CSCL community as three primary
clusters. The clusters are based on different phases of research: in the early phase,
the goal is to 1) Define and understand the theory of CC quality, analytics; in the mid
phase, the goal is to 2) Prototype the automatic CC analytics set up; and in the later
phase, the goal is to 3) Visualize the CC analytics to move towards quantifying the
quality of CC.

1. Define and understand CC quality, analytics

a) Define CC quality

• CC quality can be defined using an event-process framework of
indicators-indexes
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• Scenario, context and group characteristics (i.e., parameters) need to
be considered when defining CC quality

• Mapping of the parameters on indicators and indexes can define the
measurable conceptual framework for CC quality detection

b) Operationalization of CC quality

• Operationalization of CC quality suffers from coding complexity and
use of opaque inexplainable algorithms

• The gap between the theoretical measurable markers (i.e., the in-
dexes) of CC quality and the practically detected measurable markers
needs to be bridged

c) Understand CC analytics and feedback design

• All indicators of CC quality can be grouped into two categories (i.e.,
social and epistemic)

• A group of epistemic indicators cannot be detected and analyzed by
sensors alone

• CC analytics and feedback design is dependent on the stakeholders

• Humans in the prototyping and feedback loop help to speed up the
design

2. Prototype an automatic CC analytics set up

a) Content of the conversations can provide rich information about CC
quality

b) Design and prototype of a CC analytics set up is difficult to fully automate

c) Interactive network graphs can provide rich insights into the interconnec-
ted conversation patterns between group members

3. Visualize the CC analytics to move towards quantifying the quality of CC

a) There needs to be a focus shift from the social space to the epistemic
space of CC analytics

b) Collaborative convergence (i.e., an increase in shared knowledge among
group members) measured from the epistemic space helps to quantify the
quality of CC

c) Both social and epistemic space can complement each other when visual-
ized on a dashboard (using interactive network graphs and bar graphs)
to understand CC analytics holistically
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1. Define and understand CC quality, analytics
In Part I (i.e., the early phase) the CC quality needs to be defined along with its
operationalization and usage to understand CC analytics and feedback design.

a) Define CC quality

CC quality can be defined using an event-process framework of indicators-
indexes

We did an in-depth literature review of the indicators of CC quality. Here, we first
focused on the indicators that are relevant to understand the quality of CC from the
related literature. Then, we defined the indexes of CC using these indicators. The
low-level sensor-based, human or hybrid events in collaboration after processing and
aggregation form the indicators of collaboration which help to detect the quality of
CC. The high-level indexes consist of one or more indicators obtained from multiple
indicator types. They act as a proxy to detect the quality of CC. For example, counting
the number of ideas during a brainstorming scenario in CC is obtained from the
events grouped in the content indicator type; while a high-level process definition,
that is, equality of the number of ideas generated by each member in the group,
measures the quality of collaboration. Here, higher equality in a group denotes
a better quality of collaboration. Thus, the event–process conceptual framework
provides a holistic overview of the quality of collaboration based on the practical
studies.

This conceptualization is a precursor for building different types of collaboration
detection, monitoring, and prediction systems. Some of the indicators like total
speaking time (Bachour et al., 2010; Kim et al., 2008), and number and duration
of overlap of audio (Zhou et al., 2014) are consistently indicative of collaboration
quality across different studies. But, the same is not true for other indicators such
as distance between group members. The distance between group members gives a
mixed indication of the quality of CC; that is, sometimes it is inversely proportional
(Spikol et al., 2017a,b) or sometimes there is no relation (Schneider and Blikstein,
2015) with CC quality. Thus, the comprehensive overview of the indicators will
help practitioners to choose the relevant types of sensors, sensing mechanisms and
indicators to detect CC quality according to their setup. So, first they can focus on
the indicators (such as total speaking time and joint visual attention) that worked in
most settings instead of focusing on the indicators (such as writing speed, pressure
from the digital pen, distance between group members, and space usage in the room
during group work) that have no relation with CC quality during preliminary studies.

Scenario, context and group characteristics (i.e., parameters) need to be con-
sidered when defining CC quality

The indicators of CC quality vary across scenarios, their goals and contexts, and
the fundamental characteristics of the group. Therefore, we also looked at the
impact of different scenario-based goals and parameters for CC on the relevance
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of the different indicators in the literature review. We found that the scenario of
CC (i.e., task context) chosen has a huge impact on the indicators of collaboration
obtained. The parameters of CC (i.e., group composition and group behaviour
such as dominance, rapport) also affects the detection of quality. Some scenarios
have a stark contrast in terms of the collaboration indicators observed; for instance,
collaborative brainstorming and collaborative gaming. However, some scenarios
have certain overlapping collaboration indicators; for instance, collaborative design
and collaborative concept mapping. This detection of scenario-based indicator
types is also dependent on the use of the shared artifacts (e.g., patient manikins or
smart touch table). The scenarios heavily dependent on shared artifacts tend to be
inclined towards nonverbal indicator types (such as engineering design, gaming and
healthcare simulation). In addition to it, some indicator types like eye gaze, gesture,
and audio are dependent on context while some others like physiological ones are
not. We find that higher occurrence of joint visual attention (JVA) (Schneider et al.,
2015) measured from the eye gaze indicates better CC quality while the same is not
true when individual eye gaze of speaker and listener is considered (Terken and
Sturm, 2010). This indicates that CC is scenario-dependent and the collaboration
indicators can vary depending on the scenario, its goal, and context. But, when we
consider physiological indicator types then we find that instances of aroused and
relaxed states are context-independent and can be misleading unless contextualized
with other modalities like audio (Malmberg et al., 2019). Besides, the varying
scenario-based goals, groups also vary in fundamental parameters. To understand
this, we created a mapping of the parameters to the indicators and indexes to model
a conceptual framework with the aim to detect CC quality.

Mapping of the parameters on indicators and indexes can define the measur-
able conceptual framework for CC quality detection

For this mapping, we chose one of the most occurring CC scenarios (i.e., collaborative
problem solving) in the review which had well-defined task objectives too. Here,
we mapped the CC parameters (such as behavior, composition, interaction, etc., of
group members) onto the indicator types and the indexes. We found that mapping
the parameters helped in furthering the semantic enrichment of the parameters, high-
lighting the relevance of the indicators, and thereby defines a complete measurable
setup. For instance, dominance (a parameter of CC) can be mapped onto audio
(an indicator type) taking into account the total speaking time (as an indicator) to
measure the equality (an index) in the group; whereas the same parameter can be
mapped onto synchrony (as an index) when posture (indicator type) is considered.
Therefore, the same fundamental parameter (i.e., dominance in this case) can be
measured differently depending on the indicator type (consisting of a group of sim-
ilar indicators) and the indexes considered for measuring the quality of collaboration.
If a group has higher dominance then specific members are more dominant than
others. This is measured by synchrony or equality. Higher dominance means lesser
synchrony or equality and worse quality of collaboration. Therefore, this measurable
conceptual framework acts as a road map for future research and evaluation on CC
quality.
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b) Operationalization of CC quality

Operationalization of CC quality suffers from coding complexity and use of
opaque inexplainable algorithms

The operationalization of the indexes from the indicators suffers from multiple
limitations. Coding the indicators to compute the indexes is challenging at times
(Cukurova et al., 2018, 2017a), as in the case of individual accountability; thus
failing to detect CC quality. Another limitation is the use of machine learning
approaches (Grover et al., 2016; Luz, 2013; Stewart et al., 2018; Viswanathan and
VanLehn, 2017) which use one or more indicators to detect CC quality but fail to
address the qualitative aspect of these indicators. For instance, silence and pause are
good indicators of CC quality combined with other indicators (Luz, 2013) but it is
unclear if more or less occurrence of silence in itself indicates anything about the
quality of CC. This tension between the transparency of the learning analytics models
and the accuracy highlighted by Cukurova et al. (2020) is still an open question.
Some machine learning models which are like a black box (very opaque) have higher
accuracy even though they are not transparent in terms of the role of each of the
indicators of CC.

Furthermore, few indexes have been operationalized from a chosen set of indicator
type while ignoring other types. For instance, synchrony has not been operationalized
using the content indicator type. This may be attributed to the difficulty involved in
detecting and analyzing the similarity of content of a discussion (or comparing the
semantic nature of the discussion itself) during collaboration. This also brings into
picture the importance of choosing the right sensing mechanisms and sensors in the
respective CC scenario. However, equality index has been easily detected using the
content indicator type (number of ideas as an indicator) as it is easier to measure
a quantitative value (i.e., the number of ideas generated by each member during
collaboration).

The gap between the theoretical measurable markers (i.e., the indexes) of CC
quality and the practically detected measurable markers needs to be bridged

The mapping while defining the measurable conceptual framework for CC quality
detection earlier is incomplete because of a lack of the operationalization of the
indexes and a dearth of well-defined task goals. This restricted our conceptual
framework design to only one of the most occurring scenarios. To overcome this
scarcity, we substituted expected indexes based on our understanding from both the
theory and practice. Thus, there is an urgent need for practitioners (or teachers) to
act upon the other theoretical indexes (as outlined by Meier et al. (2007)) when
measuring collaboration quality in CC. This can make more indexes from the theory
visible in practice and bridge the gap to define a measurable setup for each scenario.
Nonetheless, the framework is a starting point for making design-based decisions of
a particular scenario of CC so that more measurable markers (i.e., indexes) can be
added up to make it a complete set up for CC quality detection. Other collaboration
frameworks (OECD, 2017; Ofstedal and Dahlberg, 2009; Koh et al., 2016) can be
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looked into to help in bridging this gap by comparing these frameworks.

c) Understand CC analytics and feedback design

All indicators of CC quality can be grouped into two categories (i.e., social and
epistemic)

When reviewing the past literature on indicators of CC quality, we found broadly
two groups (Praharaj et al., 2018b). Firstly, the social group consists of all the
non-verbal indicators (such as different gestures and postures, eye gaze, non-verbal
audio indicators like the total speaking time and turn taking) and secondly, the
epistemic group consists of the indicators relevant to understand the content of the
conversation (such as the actual content of discussion, ideas presented, any content
related data obtained from data logs). The idea of grouping the indicators comes
from the social and epistemic collaboration scripts grouping (Weinberger et al.,
2005).

A group of epistemic indicators cannot be detected and analyzed by sensors
alone

For detecting the social group of indicators, sensors have been mostly used (Kim
et al., 2008; Schneider et al., 2015). But, for detecting the epistemic group of indic-
ators human help was required (Praharaj et al., 2018b) as it is difficult for sensors
to automatically detect when ideas are generated from speech by understanding
the semantics. It is also difficult to understand the actual content and context of
the discussion. This was evident from different studies needing human observers
to overcome this semantic difficulty (Tausch et al., 2014; Wise et al., 2017; Harrer,
2013). Lately, with the maturity of automatic speech recognition (ASR) techniques
and natural language processing (NLP), the automation of speech to text transcrip-
tion and analyzing the content of the conversations is showing promise. But, it is far
from completely removing humans in the loop yet. For example, humans are needed
to change certain names in speech to text transcription, to understand the boundary
of a long conversation and separate ideas contributed in a particular context from
non-ideas (Tausch et al., 2014).

CC analytics and feedback design is dependent on the stakeholders

While addressing the review on the feedback mechanisms during CC, we found
feedback is either real-time (for acting as reflection or guiding the group members)
or post-hoc (for the purpose of reflection). We found two main stakeholders for whom
this feedback was designed in different studies: The teachers (or facilitators) and the
group members. This distinction was essential to understand the feedback design
requirements. Some works used smart devices (such as tangible user interfaces,
interactive smart white boards and tablets) during collaboration which require a lot
of preparation to set up before a collaborative task. Therefore, it is difficult to use
these in real-world dynamic settings. There were also two categories (i.e., private
and public) of feedback display. So, there is a trade-off between personalization and
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privacy for the group. More personalized feedback for the whole group meant that it
is also less privacy preserving. Thus, a design decision needs to be made on the level
(i.e., group, individual or both) of feedback to be shown for different stakeholder
groups.

Humans in the prototyping and feedback loop help to speed up the design

To give real-time feedback using a hybrid set up of humans and sensors, we took a
quick preliminary step in building an initial prototype design. The main goal was to
facilitate collaboration in real-time during group PhD meetings and to get a feel of
how this set up works in authentic in-the-wild setting. We were successful in building
a click-based interface for the human annotator who clicked the interface based on
“who spoke when”. This was made possible with microphones capturing the audio
of the group. Then the total speaking time and turn taking patterns for the group
were generated temporally with a click and shown as a real-time reflective feedback
on a public display. This helped us to create a hybrid setup very quickly without
building an actual automated sensor-based system to experiment with different
types of real-time feedback mechanisms during CC and enabled us to gather some
insights for future feedback designs. Therefore, humans in the prototyping and
feedback loop help to speed up the design by bootstrapping. Using these insights,
other modular components can be built to track other indicators of collaboration
quality; and integrate them on a single dashboard.

2. Prototype an automatic CC analytics set up
Using the definitions of CC quality, analytics in part I, an automatic CC analytics set
up can be prototyped.

a) Content of the conversations can provide rich information about CC qual-
ity

Surface level methods (like the participation measured by total speaking time, turn
takings) provide rough analysis of collaboration in the group. Content analysis
helps us to know why one group member contributes more and appears to be more
influential in the group (Strijbos et al., 2006). This content analysis on a more deeper
level has been analyzed manually using knowledge convergence (i.e., increase in
shared knowledge in the group) and cognitive convergence studies by (Jeong and
Chi, 2007; Teasley et al., 2008). High knowledge convergence implies better quality
of collaboration. Similarly, other studies have done content analysis with human
observers by measuring the number of ideas contributed by the group members
(Tausch et al., 2014). They found that if every member makes an equal contribution
to the number of ideas then that group has better quality of collaboration. Other
studies were on content analysis with the help of external artifacts like Tangible User
Interface and Smart Tabletops where a comparison of a stored solution with the
solution of the group members was made to detect the collaboration quality based
on how much the solution matched to the expected answer (Echeverria et al., 2017;
Wong-Villacrés et al., 2016; Granda et al., 2015).
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Recently with the maturity of the automatic speech recognition (ASR) techniques, do-
ing content analysis from audio conversations has become easier because of the accur-
acy of the automatic speech to text transcription. Few studies (e.g., Chandrasegaran
et al. (2019); Huber et al. (2019)) have done topical keyword cluster abstract over-
views by utilizing ASR and NLP techniques. Then they compared these clusters
to the meeting agenda to detect the quality of collaboration based on how much
the discussions match with the agenda. Therefore, content of the conversations
can provide rich information about CC quality. We also did content analysis of
the conversations in an university setting which we will discuss in the following
subsection after discussing the challenges.

b) Design and prototype of a CC analytics set up is difficult to fully auto-
mate

There are a lot of challenges in the technical implementation and prototyping of an
automatic CC analytics set up. First, architectural challenges are full automation,
accuracy of speaker diarization, and accuracy of speech to text transcription. During
speaker diarization, sometimes labels of roles are misplaced which needs to be
manually corrected. Next, there are challenges in processing and analysing the
data which is primarily dependent on the transcription. The unstructured text data
obtained from audio in a co-located setting is quite different and noisy compared
to data obtained from any online forums. It needs sentence segmentation to split it
into meaningful sentences. But, the sentence segmentation working on only spoken
text without punctuation marks or delimiters can cause sentence boundary detection
problems.

Another challenge in text processing is to correct the names which are most of
the time wrongly transcribed. For example, “moodle” (the name of a learning
management system) was wrongly transcribed to “moeder” (the Dutch word for
mother) and we had to manually fix this in the text corpus. So, when studies are in-
the-wild without a controlled lab environment then there are more chances of natural
unstructured conversations requiring cleaning and structuring before analysis can
yield meaningful results. Sometimes automatic stop word removal by the algorithms
is not sufficient. We also needed to manually remove some contextual stop words
like some action verbs depending on their usage in our context. When we lemmatize
and stem the words then the lemmatizer for Dutch text is often not accurate enough
because of less usage and popularity as compared to English lemmatizers resulting
in same meaning for two different root words. Therefore, sometimes we need to
manually correct some root words.

However, lately with the maturity of the ASR systems and the NLP text processing
techniques, some of the challenges like punctuated speech to text transcriptions,
contextual removal of stop words, lemmatization of text in other languages than
English is being improved further. But, one needs to keep this in mind during the
design and prototyping of a CC analytics setup.
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c) Interactive network graphs can provide rich insights into the interconnec-
ted conversation patterns between group members

While doing content analysis of the text corpus obtained from the conversations,
first, we analyzed different bigrams (or two consecutive word phrases) and made a
distinction between some of the frequently occurring bigrams and rarely occurring
bigrams. We did this in one session and one phase of the CC task which is more
inclined to technology-based discussion for two roles i.e., “Technology Enhanced
Learning and Learning Analytics Advisor” and “Teacher” because they had the
highest turn-takings during that phase. The primary objective was to make sense
of the dominant role-role interactions in a phase with the help of the bigrams. To
understand the conversations further in-depth, we built the co-occurrence matrix
which shows the strength of the co-occurence of the words and how often they occur
together in the same utterance. We visualized this using an interactive (i.e., highlight
specific portions to reduce distraction and information overload) social network
graph (as done earlier in online settings by Xie et al. (2018)). Here the strength of
the word-to-word linkage was shown by varying the thickness of the edge and the
word frequency was shown by varying the size of the node. Then we highlighted
the conversations of different roles in the whole conversation corpus using different
shapes for the nodes.

Therefore, the interactive network graph made it easier to understand contribution
of different roles and role-role exchanges during the group conversations. To under-
stand the influential and controlling words and phrases during the conversation, we
computed different centrality measures (as done in the past by Das et al. (2018))
from the network graph. The influential words (measured by eigenvector centrality)
and the controlling words (measured by betweenness centrality) bring out the im-
portant discussion points which were not visible plainly with the word frequency. For
instance, in the technology phase, the word “technology” was not frequently used
during discussion but it was one of the words with high betweenness centrality. It is
because the word “technology” has more influence over the network of words (or
more often mentioned with other words in a phrase) during that phase of CC.

3. Visualize the CC analytics to move towards quantifying the quality of CC
Finally CC analytics needs to be visualized to be able to get a holistic understanding
and make an attempt to understand the quality of CC.

a) There needs to be a focus shift from the social space to the epistemic
space of CC analytics

Using the set up developed in Part II, we conducted field trials across 14 different
collaboration sessions and built a dashboard to visualize the group speech data in
Part III. Expanding the short literature review on indicators of CC quality from group
speech data in Part II, we defined the contextual operationalization of the indicators
from the perspectives of different spaces, i.e., physical, social and epistemic (based
on Praharaj (2019); Praharaj et al. (2018b)). We found that most studies (Bachour
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et al., 2010; Kim et al., 2008) in the past focused on the analysis of the social space
of collaboration and that the very few studies (Chandrasegaran et al., 2019; Huber
et al., 2019) that did focus on the epistemic space were abstract in nature or followed
a manual approach (Jeong and Chi, 2007; Teasley et al., 2008). Epistemic space
analysis helps us to know why one group member contributes more and appears to
be more influential in the group (Strijbos et al., 2006) instead of a rough surface level
analysis on collaboration (e.g., who spoke more or which group members exchanged
most turns). The indicators from the social space are less obvious to understand
collaboration as compared to indicators from the epistemic space (or the actual
content of the conversation). Depending on the cultural background of a group
member, tone of the voice can vary; thereby, acting as a good or bad indicator of
collaboration. On the other hand, the “what” of the conversations is more obvious in
meaning in most of the circumstances irrespective of the background. One reason for
the heavy inclination to the social space of CC could be attributed to the immaturity
of automatic speech recognition (ASR) systems which gives rise to the difficulty
of transcribing the conversations. However, recently, with the ubiquitous use of
different ASR systems like Google speech-to-text, it has become much easier to
convert speech to text with higher accuracy and speed. Therefore, there needs to be
a focus shift from the social to the epistemic space of CC analytics.

b) Collaborative convergence (i.e., an increase in shared knowledge among
group members) measured from the epistemic space helps to quantify the
quality of CC

We investigated how co-located collaboration indicators from group speech data
can be analyzed automatically. To this end, we conducted field trials in 14 different
collaboration sessions where we collected the audio recordings in an university
setting. The CC task was to design a learning activity. Here, each group member
was pre-assigned a role (such as teacher, all advisors, study coach, learner and game
master) before collaboration. Each session had three different phases (i.e., blue,
red and yellow), each phase with different objectives. For the CC analytics we used
the definition of quality of CC from the literature review (Praharaj et al., 2021a).
We analyzed the collaboration convergence (i.e., increase in shared knowledge of
specific phase related keywords) automatically as evolving conversations in a phase
motivated by manual knowledge convergence (i.e., increase in shared knowledge)
and cognitive convergence studies done earlier Jeong and Chi (2007); Teasley et al.
(2008). This helped us to understand the change in role-role conversation patterns
with time. Furthermore, this helped us to infer if more phase-related keywords were
discussed or not which in turn defines their contextual importance. Along-with with
the social space analysis (shown as role-role interaction network graph with speaking
time and turn-taking between roles), the holistic overview of how the conversations
evolved could be obtained. This helped us to quantify the collaboration quality.

Our primary objective of doing this was to show how to measure collaboration quality
using convergence instead of categorizing whether higher or lower convergence is
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good or bad. It turned out that this categorization fully depends on the collaboration
context and how on-topic or off-topic the word or phrase being used is. As we did not
define fixed objectives before the collaboration task and did not conduct a controlled
lab-based study, the detection of CC quality is quite open to interpretation.

c) Both the social and the epistemic space can complement each other when
visualized on a dashboard (using interactive network graphs and bar graphs)
to understand CC analytics holistically

Finally, we investigated how to visualize the quality indicators of collaboration from
group speech data. We built a dashboard including both the social and epistemic com-
ponents. We used network graphs and bar graphs to show the role-role interaction
in both the social and epistemic space respectively. To get an in-depth understanding
of the epistemic space, we built an extended interactive network graph (which can
be highlighted with a search bar, selection or hovering) to do role-based profiling of
the dominant conversations (measured from the social space using indicators like
total speaking time and turn takings) during collaboration. Using this graph, we
understood the frequently used words, strength between certain words, importance
of the words and the importance of the uttered phrases. These visualizations on a
dashboard helped us to analyze the evolving CC conversation patterns holistically,
hence understand the CC analytics holistically. Therefore, from the social space one
can understand “who” dominated the conversation and then from the epistemic
space it will be clear as to “why” that member dominated and in “what” way.

Besides, the dashboards will need customization in the future depending on the
purpose of use (i.e., post hoc or real-time) and the stakeholders (teachers or group
members). The dashboard is now a generic version which is information rich instead
of being tailor-made for a specific stakeholder group. Even though it provides a
holistic view of the evolving collaboration patterns, it is not targeted to a specific
stakeholder group (i.e., teacher or group members) which can be modified further
depending on their needs to make it suitable for them. Furthermore, the network
graph in the dashboard can be overwhelming when it is generated for a long time
duration where the number of nodes and edges can cause overcrowding, clutter and
the popular hairball problem in large network graphs. This should be tackled while
considering the dashboard design in future iterations.

Limitations
Limitation of the literature review done in Part I is having to exclude different types
of study (i.e., correlational vs interventionist) due to the scope of the review. This
can open doors for another direction of future work to look into different feedback
mechanisms used and how this model can be helpful with this regard.

The final limitation of the review is that we did not consider the number of groups
used by different past studies. We think that this will be a good direction of future
research even though it will be difficult to determine a threshold as to how many
groups considered in a study will make it worthy of inclusion in the review. As per
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the title of Chapter 2, we do not think we are there yet (i.e., the whole nine yards)
because CC modeling is dependent on many factors like how it is operationalized, in
what context, and the impact of culture. Thus, we have a made a starting step to
model CC in one of the scenarios taking into account the indicators, indexes, and
parameters but not considering the number of groups, or types of algorithms (such
as pattern mining, random forest classifiers) used.

The architecture and prototype related limitations in Part II have been addressed
in the recommendations. Similarly, in Part III, the dashboard has some limitations
which have also been addressed in the recommendations.

Moreover, in this current study in the thesis, we have used only one group setting.
If we use different group settings then we can have different outcomes. We also
did not test the impact of the visualizations on the stakeholders which will be an
interesting direction to go later.

Implications and Final thoughts
The thesis has major implications in the field of co-located (or face-to-face) collabor-
ation or team(work) research. It gives recommendations for the CSCL, collaboration
and team(work) research community based on different phases (i.e., early, mid and
later) of the research in 3 different clusters.

In Part I, CC quality is defined along with its operationalization and then CC ana-
lytics, feedback design is understood. We provide a theoretical definition of the CC
quality and contextualized it in different scenarios. For instance, in collaborative
brainstorming (i.e., the CC scenario), equality (i.e., index) of the number of ideas
contributed (i.e., the indicator) by each member in the group helps to determine
the quality of CC (Tausch et al., 2014). So, the higher the equality, the lower is the
dominance (i.e., the parameters) in the group, and thus the better is the CC quality.
Therefore, this example shows that in the case of a collaborative brainstorming
context here, the presence of less dominant members is what makes the qualities of
effective team(work).

Moreover, we model a conceptual framework for CC quality detection based on
a scenario-driven prioritization. This can act as a starting step for researchers to
operationalize other CC indexes from theory to practice. They can borrow from
research on collaboration indexes in an online setting. For instance, previous works
have detected different indexes during remote or online collaboration (from the
eye gaze as an indicator) like reaching consensus, information pooling, and time
management (Schneider and Pea, 2014b) (as outlined by Meier et al. (2007)) with
the help of network analysis and graph theory. There needs to be a clear definition
of the goals of the collaboration task. The final confluence of both approaches
of modeling collaboration quality (i.e., sensor-based and scenario-based) gives a
holistic picture of CC quality detection in a particular scenario.

CC analytics is needed to understand the collaboration processes, make the group
aware of how they collaborate and support collaborators to do better team work.
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The indicators of CC quality can be broadly grouped into social and epistemic
categories. Researchers using the epistemic group of indicators need to pay careful
attention to choosing the right sensors and sensing mechanisms. The reason being
the semantic limitations of sensors (e.g., to exactly find out when a new idea starts
in the conversation) in understanding the content and context of the conversations.
Thus, depending on the type of collaboration task, humans combined with sensors
can help to speed up the preliminary prototyping and feedback design.

In Part II, aim was to prototype an automatic CC analytics set up using the CC quality
definition in Part I. Literature review revealed that content of the conversations
can provide rich information about CC quality. This can be a good direction for
researchers to focus on. However, designing and prototyping a CC analytics setup
to analyze the content of the conversations is difficult to automate fully. So, the
limitations in automation need to be kept in mind when thinking about scalability
and time necessary to build such a set up. Using interactive network graphs can be
a way forward to understand the huge text corpus of conversation among group
members.

In Part III, CC analytics is visualized with an aim to move towards quantifying
the CC quality. The main recommendation for researchers is to shift their focus
from social and epistemic space. Automated analysis of the epistemic space is still
underutilized which can be tapped into now with the maturity of the automatic
speech recognition techniques and natural language processing. Different epistemic
CC quality measures (like convergence in our case) can be implemented efficiently
now similar to their manual implementation in the past to understand in depth
the content of the conversations. To this end, we have built a generic dashboard
to visualize collaboration analytics based on different collaboration indicators in
the social and epistemic space. This dashboard is useful to show “how” each role
interacted during the collaboration task and the role-role exchanges and “what” they
interacted. Now, the next important question is: “Who would use it and why?”.

This question will be answered by understanding the needs of the dashboard design.
This will be an interesting direction for researchers to look into. The dashboard
design will be primarily driven by the temporal needs (i.e., whether updated in
real-time every few minutes or shown as a summary at the end of collaboration) and
the stakeholders (teacher or task moderator or the group members themselves) who
will be using it. To cater to the temporal needs, a differentiation needs to be made
between what can be shown as an immediate formative feedback and what can
be shown as a summative feedback at the end of collaboration. To uncover this, a
qualitative study needs to be done by interviewing different stakeholders to identify
the user requirements. For example, a dashboard for a teacher (as the stakeholder)
could be useful to determine scaffolding strategies during collaboration and also
planning the collaboration sessions. For the group members, it can be a useful
tool to self-reflect and adapt their collaboration accordingly. It is also necessary to
distinguish the purpose of the feedback (i.e., whether feedback is used for mirroring
or guiding) that needs to be built (Soller et al., 2005).
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Therefore, the major outlook for the future will be to measure the quality of collab-
oration by adding additional modules to this set up and give feedback (an example
of feedback in Praharaj et al. (2019)) to facilitate collaboration. Our primary goal
will be to use the model of CC in the designed scenarios and then look into different
feedback mechanisms that have been built using these indicators to facilitate collab-
oration. This combined with the indicators of collaboration quality can help to derive
the conceptual and implementation model to discover other indexes of collaboration
for the community. As a result of which, it will pave the way to form the feedback
mechanism to facilitate collaboration for a particular collaboration task.

Besides, due to the emergence of COVID-19, a massive shift of education is happening
from the physical space to the online space. Therefore, we are looking into adapting
our approach to an online setting from a face-to-face setting. Because of our modular
approach, it will be easier to adapt the technical setup. Moreover, we will not need
speaker diarization in an online setting, and it will be much easier to get different
clean audio streams from each group member in an online setting.

Collaboration analytics and support plays an important role to facilitate collaboration
(i.e., a 21st century skill). Collaboration enhances interaction, problem solving and
productivity (Kivunja, 2015). Collaboration improves efficiency not only in teaching
and learning but also in all walks of life after school (Johnson and Johnson, 1991).
Collaboration can be useful for different purposes (such as brainstorming, problem-
solving, programming, learning, engineering design) as found in the literature review
earlier. Engaging in a collaborative task does not necessarily build collaborative skills
(Dillenbourg, 1999); rather on-time feedback and support encourages self-reflection
(O’Donnell, 2006). Therefore, effective collaboration analytics and support needs to
be implemented.
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Appendix A

A sample consent form in Dutch (used in Chapter 3 and 4)

Toestemmingsformulier

Tijdens dit experiment worden er op verschillende manieren gegevens verzameld:

- Er is een vragenlijst over hoe vaak u reeds met FoLA2 gewerkt hebt. In deze vragenlijst wordt
gevraagd hoeveel jaren ervaring u heeft betreffende de rol die u gaat spelen.

- Er is een vragenlijst, gebaseerd op de UTUAT2 vragenlijst die inzicht verschaft in de kennis,
ervaring en de verwachting rondom learning analytics.

- Er worden videobeelden gemaakt van het spelbord en de omgeving. Deze worden alleen voor
interne analyse gebruikt over het spelverloop.

- Gedurende het spel wordt de stand van het spelbord opgeslagen.
- Er worden per persoon geluidsopnames per deelnemer gemaakt. Die worden gebruikt voor

twee doeleinden:
o 1) Analyse doeleinden in het onderzoek van Marcel Schmitz (Zuyd en OU) om het

spelverloop in kaart te brengen
o 2) Analyse doeleinden voor het onderzoek van Sambit Praharaj (OU), dat als doel

heeft om samenwerking binnen de groep inzichtelijk te maken middels tekstanalyse
gebaseerd op verschillende rollen.

De persoonsgegevens die worden opgeslagen zijn de ervaringsgegevens betreffende de rol die
gespeeld wordt tijdens het spel. Deze worden niet gekoppeld aan andere persoonsgegevens.

Alle gegevens worden geanonimiseerd en daarna opgeslagen. De audiogegevens zullen via NLP
omgezet worden in tekst en geanalyseerd worden. Na afloop van het PhD onderzoek zullen de
videogegevens verwijderd worden. De audiogegevens zullen geanonimiseerd worden opgeslagen en
na maximaal vijf jaar verwijderd worden. De videogegevens zullen 1 jaar na afloop van het onderzoek
verwijderd worden.

Mocht u na het geven van de toestemming toch willen dat de geluidsopnames en ervaringsgegevens
verwijderd worden dan kunt u een mail sturen naar marcel.schmitz@zuyd.nl. Deze gegevens worden
dan verwijderd.

О Ik geef geen toestemming voor het gebruik van de informatie die over mij is verzameld.

О Ik geef toestemming voor het gebruik van de over mij verzamelde informatie voor het
onderzoeksproject van Marcel, maar niet van Sambit.

О Ik geef toestemming voor het gebruik van de informatie die over mij is verzameld voor de
onderzoeksprojecten van Marcel en van Sambit.

Naam, `datum, locatie, handtekening

__________________________________________________________________________________

141





Appendix B

Overview of social space (i.e., dominant role-role exchanges in terms of
speaking time and turn taking) and epistemic space (i.e., relevant bigrams)
for individual roles in red phase across all sessions (Chapter 4)

Sessions All Advisors (A) Study Coach (S) Teacher (T) Learner (L)

1 (A-T, A-S) Smart screen, make photo,
mobile phone, technology
need, technology effort, on-
line collaboration, screen
wiki, mobile phone, make
post, post its, teacher pre-
pared

Concept mapping, map tool,
question test, then Belbin, fi-
nally visualizer, necessarily
mindmap, interesting wear-
able, action finally

Team composition, fourth
block, trigger interaction,
blog vlog, various roles,
vlog wiki, mobile telephone,
make mindmap, group out-
come, ideal group, make
post, post its

Via moodle, moodle work,
new team, form film, good
post, post its, its use

2 (A-T, A-S,
A-L, T-S)

Interaction booster, techno-
logy need, smart screen,
teacher student, normal in-
teraction

Team attribute, discussion
attribute, different context,
stay screen, wordcloud or so

New group, old group, ques-
tion pair, screen on top, ques-
tion DUO, physically screen,
target interaction

Demand interaction, team
communication, more in-
teraction, year shakespeak,
teacher communication

3 (A-T, T-S) No screen, smart screen, in-
teraction booster, technology
need

Same shakespeak, smart
screen, last evaluation goal,
interaction booster

Interaction booster, online
collaboration, bring lesson
material, collaboration en-
vironment, environment
moodle, smartscreen note,
make note

Make problem, student inter-
action, search quiz

5 (A-T, A-L,
T-S, T-L)

Quiz moodle, apply know-
ledge test, make telephone,
study place, paper digital,
conflict handling

Shakespeak mean, write
paper, red card, basic con-
flict, learning technology
card, make app, learning
technology reach

Oral class, individual input,
make quiz, criticize DUO,
teacher analysis, laptop oral,
late student

Video clip commercial, mo-
bile person, easy laptop,
laptop pack, classroom mo-
bile, click send

6 (A-T) Leave smartscreen,
smartscreen need, handout
paper

Moodle mail, question an-
swer, personal reflection, re-
ceive smartscreen, learn ma-
terial, leave tool

Learning analytics, white-
board like that, yes upload,
clear communication, stu-
dent week, finally paper, pos-
sibly board, student trust

Moodle body, pairing rules

7 (A-T, A-S) Online collaboration,
shakespeak after all, video-
clip target, make online

Monty python, extroverted
person, extroverted student,
want shakespeak, person ex-
clusive, random tool

Interaction booster, state
feedback, student class,
live question, ask teacher,
expected feedback

Monty python, smart
board, smart screen, send
shakespeak, personal grade,
write question

8 (A-T, A-L,
T-L)

Shakespeak form, smart
screen, excites student,
discussion manner, data use,
student app

Lubach film, good film, dis-
cussion trigger, at student

Save data, manner data,
good question

Interaction booster, teacher
learner, real question-
naire, minutes time, via
shakespeak, say quiz,
smartscreen stake

9 (A-T) Clear padlet, smart screen,
describe assignment, padlet
lecture, booster shakespeak,
screen use, moodle question
mark, whiteboard kind of

Present powerpoint, map
tool, manner data, concept
map, data visualizer

Smart board, see histogram,
see graphics, last white-
board, whiteboard number,
padlet open

Little moodle, search in-
ternet, smart screen, as-
signment document, collect
data, verbally explain, smart-
phone screen, email teacher,
inform data

10 (A-T, A-L) Smart board, padlet wall,
mindmap tool, group
mindmap, interaction
booster, put padlet, as-
pect survey, survey think,
yesterday statistic

[No contribution] End evaluation, student
smart, smart board, pad-
let wall, student discount,
student access

Map tool, listen online, bad
assignment, concept map

11 (T-L) The sendstep, difficult dis-
cussion, work online, go on-
line, find present

Shakespeak pair, via
shakespeak, ask evalu-
ation question, qualitative
survey

Reflective feedback, feed-
back present, technology
need, supply shakespeak,
question answer

Smart screen, throw in-
box, make shakespeak,
online things, need dropbox,
quarter click, online difficult,
difficult discussion

12 (T-S, L-S) More padlet, go reflect, di-
gital white, white board

Put smartscreen, interac-
tion booster, student paper,
booster use, find feedback,
think DUO

Moodle quiz, leave creativity,
yes digital, survey form, tar-
get pair

Naturally laptop, make
powerpoint, use teacher,
target question

14 (A-T, A-S) Put moodle, interaction
booster, enclose mindmap,
say videoclip, learning
analytics, yes results

Complex theory, class result,
unclear moodle, Socratic les-
son, self study form, quiz res-
ult, moodle result, extended
abstract

Student theory, activate in-
side knowledge, watched
quiz, quiz question

Mind maps, maps recap,
make mindmap, finally ob-
serve
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Appendix C

Code Repository

This website contains all the code used in different chapters and how to replicate
the data processing and analysis for the different studies in Chapter 1, Chapter 2,
Chapter 3 and Chapter 4.

https://bit.ly/SambitPhDThesis
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Summary

Collaboration is one of the 4 important 21st century skills (Kivunja, 2015). When
two or more people work towards a common goal then collaboration is said to occur
(Dillenbourg, 1999). Collaboration can take place either in an online setting or
in a co-located (or face-to-face) setting. The measurement of online collaboration
processes is possible due to the measurement, collection and analysis of the learner
data using learning analytics (Siemens, 2011; Greller and Drachsler, 2012). With
the ubiquitous usage of sensors lately, a new branch of learning analytics otherwise
known as multimodal learning analytics (MMLA) has risen to prominence (Di Mitri
et al., 2018a; Martinez-Maldonado et al., 2017a). Moreover, sensor technology has
become more scalable (Reilly et al., 2018), affordable and reliable in the past decade
(Starr et al., 2018). There is a focus shift towards the analysis of CC due to the rise
of MMLA.

In this thesis we focused on co-located (or face-to-face) collaboration. Co-located
collaboration takes place in the intersection of physical, social and epistemic space of
the group members. Collaboration quality can be detected using different indicators
of collaboration in different spaces (i.e., epistemic and social spaces) (Praharaj et al.,
2018b). The social space comprises the non-verbal indicators (posture, gesture, eye
gaze and non-verbal audio indicators like speaking time, pitch, turn-taking). The
epistemic space comprises the verbal audio indicators (such as the content of the
conversation) and content log data.

The main objectives of this thesis are: 1) To define and understand the co-located
collaboration (CC) quality and the analytics; 2) To develop a technical prototype
and test it with field trials to move towards automated collaboration analytics using
the aforementioned definitions; 3) To visualize the CC analytics and move towards
quantifying CC quality.

To fulfil these objectives, we have subdivided the thesis into three parts and four
chapters. In Part I consisting of 2 chapters (i.e., Chapter 1 and 2), we describe the
definition for CC quality, and how quality is contextualised in certain scenarios of
collaboration. We also connect quality to suitable analytics and feedback mechanisms
to support learners in collaboration. In Chapter 1, we do an exploratory state-of-the-
art review to understand how indicators help to detect the quality of collaboration.
Then we looked into the studies on CC feedback and analytics to understand how
these indicators helped to facilitate collaboration. For example, during collaborative
meeting, total speaking time was used as an indicator of collaboration quality to
give real-time feedback to support collaboration. The real-time reflective feedback
was shown by glowing the required number of LED lights (i.e., proportional to the
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total speaking time) in front of that group member on a smart table. This helped to
create a balance between the participants who expressed more verbally (i.e., who
spoke more) and those who expressed less verbally (i.e., who spoke less); thereby
improving the quality of collaboration. Therefore, based on the review of these
indicator, feedback examples from several studies, we designed a hybrid set up (with
the combination of human observers and sensors like microphone) to test real-time
feedback with the help of a small field study. We tested this set up during PhD
meetings and tracked two indicators of collaboration quality (i.e., total speaking
time and turn taking). Then we showed these indicators as a reflective feedback
during the meeting on a large public shared display as temporal graphs. The aim
of this feedback set up was to get a feel of it instead of testing the efficacy of the
feedback on collaboration quality.

Our findings indicate that the indicators of CC quality can be grouped into two
categories (i.e., social and epistemic). The group of epistemic indicators cannot be
detected and analyzed alone by senors and need the help of humans because of the
semantic nature of understanding them. Furthermore, CC analytics and feedback
design is dependent on the stakeholders and having human in the loop helps to
speed up the design.

To understand this further, we do an in-depth literature review of the indicators of
collaboration quality in Chapter 2. It is because the indicators of collaboration vary
depending on the scenarios and the context of collaboration. Here, we define the
quality of collaboration with a event-process framework made up of the indicators
and indexes. The indicators are low-level events obtained after processing and
aggregation from the sensors. The indexes (i.e., high level processes) act as the
measurable markers helping to detect the quality of collaboration. The are made
up of one or more indicators. For instance, in collaborative meetings (i.e., the
scenario of CC), the equality (i.e., the index) of the total speaking time (i.e., the
indicator) measures the quality of collaboration. If all group members have similar
total speaking time with no one dominating the conversation then there is higher
equality of total speaking time for the group and better quality of collaboration.
These indicators vary across different scenarios because of the differing goals and
parameters (i.e., primary aspects such as team composition, behaviour of team
members and behaviour during collaboration) of CC. For example, indicators of
CC quality for collaborative programming can differ completely from indicators of
collaborative brainstorming.

Thus, with the help of this literature review, we define a conceptual model that
encompasses the indicators, indexes and parameters to detect the CC quality. In this
model, we map the parameters in different scenarios onto the indicators and indexes
to pave the way for designing of a CC quality detection and prediction system. Our
findings also indicate that the operationalization of CC quality suffers from coding
complexity and use of opaque machine learning algorithms. There is a huge gap
between the theoretical indexes (i.e., measurable markers) of CC quality and the
practically detected indexes. This needs to be bridged.
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Using this definition of CC quality, we focus on audio-based indicators of collabora-
tion in Part II, Chapter 3. Audio is the dominantly used modality as found in the
literature review and very easy to capture with microphones. Most prior studies
focused on “how” group members speak and not on “what” they speak. Thus, the
focus was on the social space (comprising of non-verbal audio indicators such as
total speaking time, change in pitch) and not on the epistemic space (comprising
of the content of the conversations) of the audio modality. Very few works focused
on the epistemic space semi-automatically in a lab setting using manual coding.
These approaches were based on predefined conditions, gave abstract overview of
the topics of discussion and laborious to implement. So, we developed a prototype
to overcome this and analyze the richness of the epistemic space in an authentic real
world setting with the help of field trials. For this, we recorded the audio conversa-
tions during a CC task where university staff played a board game with pre-assigned
roles to create awareness of the connection between learning analytics and learning
design. We transcribed these audio recordings (i.e., convert from speech to text),
processed them and then visualized them (using network graphs to understand the
interconnected nature of the spoken text). For this, we also did a role-based profiling
to get a holistic overview of the conversations in an automatic manner. We tested
this prototype for one CC session with an aim to make a step towards automatic
collaboration analytics.

Our findings indicate that content of the conversations can provide rich information
about CC quality. With the help of interactive network graphs, rich insights about
the interconnected conversation patterns between group members can be obtained.
However, designing and prototyping a CC analytics set up is difficult to have full
automation. We need help of humans to clean the data corpus especially when name
is uttered in the conversations.

Using the developed prototype, we moved towards quantifying the quality of col-
laboration in Part III, Chapter 4 with the help of field trials across 14 different
CC sessions played in an university setting using board games. We did a holistic
analysis of the social (i.e., total speaking time and turn taking) and epistemic (i.e.,
the content of the conversations) space also considering the role based contributions
and interactions and then visualize it. We define quality of collaboration taking into
account the convergence of the discussion (i.e., shared epistemic space knowledge
as analyzed from the content of the conversations) among the group members with
different roles. Finally, we visualized both the social and epistemic space using a
dashboard; then discuss the stakeholders who can use such a dashboard and what
future research can be done on that dashboard.

We find that most of the focus on CC analytics is now on the social space and it needs
to shift to the epistemic space. CC quality measures such as convergence (i.e., an
increase in shared knowledge among group members) measured from the epistemic
space can be useful to quantify the CC quality. Both the social and epistemic space
can be useful to give a holistic view of the CC quality when visualized on a single
dashboard.
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In the Discussion, based on the findings listed above, we derive and elaborate on a
mix of observations and recommendations. We grouped these according to the phase
of the research on CSCL and CC analytics: defining the CC quality and analytics in
the early phase, prototyping the automatic CC analytics set up in the mid phase and
visualizing the CC analytics to move towards the quantification of CC quality in the
late phase.
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Samenvatting

Samenwerken is een van de vier belangrijke 21este-eeuwse vaardigheden (Kivunja,
2015). Wanneer twee of meer mensen werken aan een gemeenschappelijk doel, dan
is er sprake van samenwerking (Dillenbourg, 1999). Samenwerking kan zowel in
een online setting als in een co-located (of face-to-face) setting plaatsvinden. Het
meten van online samenwerkingsprocessen is mogelijk door het meten, verzamelen
en analyseren van de gegevens van leerlingen met behulp van learning analytics
(Siemens, 2011; Greller and Drachsler, 2012). Met het alomtegenwoordige gebruik
van sensoren de laatste tijd, is een nieuwe tak van learning analytics, ook wel bekend
als multimodale learning analytics (MMLA), op de voorgrond getreden (Di Mitri
et al., 2018a; Martinez-Maldonado et al., 2017a). Bovendien is sensortechnologie
in het afgelopen decennium schaalbaarder (Reilly et al., 2018), betaalbaar en bet-
rouwbaar geworden (Starr et al., 2018). Door de opkomst van MMLA is de aandacht
verschoven naar de analyse van CC.

In dit proefschrift hebben we ons gericht op co-located (of face-to-face) samen-
werking. Co-located samenwerking vindt plaats op het snijvlak van fysieke, sociale
en epistemische ruimte van de groepsleden. De kwaliteit van samenwerking kan
worden gedetecteerd met behulp van verschillende indicatoren van samenwerking
in verschillende ruimtes (d.w.z. epistemische en sociale ruimtes, (Praharaj et al.,
2018b)). De sociale ruimte omvat de non-verbale indicatoren (houding, gebaar,
oogopslag en non-verbale audio-indicatoren zoals spreektijd, toonhoogte, beurt ne-
men). De epistemische ruimte omvat de verbale audio-indicatoren (zoals de inhoud
van het gesprek) en inhoudslogboekgegevens.

De belangrijkste doelstellingen van dit proefschrift zijn: 1) Het definieren en be-
grijpen van de co-located collaboration (CC) kwaliteit en de analyses; 2) Het
ontwikkelen van een technisch prototype en het testen met veldproeven om te komen
tot geautomatiseerde collaboration analytics met behulp van de eerder genoemde
definities; 3) Het visualiseren van de CC analytics en te komen tot kwantificering
van CC kwaliteit.

Om aan deze doelstellingen te voldoen, hebben we het proefschrift onderverdeeld
in drie delen en vier hoofdstukken. In Deel I, bestaande uit 2 hoofdstukken (d.w.z.
Hoofdstuk 1 en 2), beschrijven we de definitie voor CC-kwaliteit en hoe kwaliteit
wordt gecontextualiseerd in bepaalde scenario’s van samenwerking. We koppelen
kwaliteit ook aan geschikte analyse- en feedbackmechanismen om leerlingen te
ondersteunen bij het samenwerken. In hoofdstuk 1 doen we een verkennende
state-of-the-art review om te begrijpen hoe indicatoren helpen om de kwaliteit
van samenwerking te detecteren. Vervolgens hebben we de onderzoeken naar
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CC-feedback en -analyses bekeken om te begrijpen hoe deze indicatoren de samen-
werking hebben vergemakkelijkt. Tijdens een samenwerkingsvergadering werd
bijvoorbeeld de totale spreektijd gebruikt als een indicator van de samenwerking-
skwaliteit om realtime feedback te geven ter ondersteuning van de samenwerking.
De realtime reflectieve feedback werd getoond door het vereiste aantal LED-lampjes
(dat wil zeggen, evenredig aan de totale spreektijd) voor dat groepslid op een
slimme tafel te laten branden. Dit hielp om een evenwicht te creëren tussen de
deelnemers die meer verbale uiting gaven (d.w.z. wie meer sprak) en de deelnemers
die minder verbale uiting gaven (d.w.z. wie minder sprak); waardoor de kwaliteit
van de samenwerking verbeterde. Daarom hebben we op basis van de beoordeling
van deze indicator, de feedbackvoorbeelden uit verschillende onderzoeken, en een
ontworpen hybride opstelling (met de combinatie van menselijke waarnemers en
sensoren zoals een microfoon) om realtime feedback te testen met behulp van een
klein veldonderzoek. We testten deze opzet tijdens PhD-bijeenkomsten en volgden
twee indicatoren van samenwerkingskwaliteit (d.w.z. totale spreektijd en beurt
nemen). Vervolgens toonden we deze indicatoren als reflectieve feedback tijdens
de vergadering op een groot openbaar gedeeld display als temporele grafieken. Het
doel van deze feedback-opstelling was om er gevoel voor te krijgen in plaats van de
effectiviteit van de feedback op de samenwerkingskwaliteit te testen.

Onze bevindingen geven aan dat de indicatoren van CC-kwaliteit kunnen worden
gegroepeerd in twee categorieën (d.w.z. sociaal en epistemisch). De groep van
epistemische indicatoren kan niet worden gedetecteerd en geanalyseerd door senoren
alleen en heeft de hulp van mensen nodig vanwege de semantische aard van het
begrijpen ervan. Bovendien is het ontwerp van CC-analyses en feedback afhankelijk
van de stakeholders en helpt het om het ontwerp te versnellen door een mens in de
lus te hebben.

Om dit verder te begrijpen, doen we een diepgaand literatuuronderzoek naar de
indicatoren van samenwerkingskwaliteit in hoofdstuk 2. Dit komt omdat de in-
dicatoren van samenwerking variëren afhankelijk van de scenario’s en de context
van samenwerking. Hier definiëren we de kwaliteit van samenwerking met een
event-proces framework dat bestaat uit de indicatoren en indexen. De indicatoren
zijn gebeurtenissen op laag niveau die zijn verkregen na verwerking en aggreg-
atie van de sensoren. De indexen (d.w.z. processen op hoog niveau) fungeren
als meetbare markers die helpen om de kwaliteit van samenwerking te detecteren.
Ze bestaan uit een of meer indicatoren. In samenwerkingsvergaderingen (d.w.z.
het scenario van CC) bijvoorbeeld, meet de gelijkheid (d.w.z. de index) van de
totale spreektijd (d.w.z. de indicator) de kwaliteit van de samenwerking. Als alle
groepsleden dezelfde totale spreektijd hebben en niemand het gesprek domineert,
is er een grotere gelijkheid van de totale spreektijd voor de groep en een betere
kwaliteit van samenwerking. Deze indicatoren variëren in verschillende scenario’s
vanwege de verschillende doelen en parameters (d.w.z. primaire aspecten zoals
teamsamenstelling, gedrag van teamleden en gedrag tijdens samenwerking) van CC.
Indicatoren van CC-kwaliteit voor collaboratief programmeren kunnen bijvoorbeeld
volledig verschillen van indicatoren van collaboratief brainstormen.
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Met behulp van dit literatuuronderzoek definiëren we dus een conceptueel model
dat de indicatoren, indexen en parameters omvat om de CC-kwaliteit te detecteren.
In dit model brengen we de parameters in verschillende scenario’s in kaart op de
indicatoren en indexen om de weg vrij te maken voor het ontwerpen van een CC-
kwaliteitsdetectie- en voorspellingssysteem. Onze bevindingen geven ook aan dat
de operationalisering van CC-kwaliteit lijdt onder de coderingscomplexiteit en het
gebruik van ondoorzichtige algoritmen voor machine learning. Er is een enorme
kloof tussen de theoretische indexen (d.w.z. meetbare markers) van CC-kwaliteit en
de praktisch gedetecteerde indexen. Dit moet worden overbrugd.

Gebruikmakend van deze definitie van CC-kwaliteit richten we ons op audioge-
baseerde indicatoren van samenwerking in Deel II, Hoofdstuk 3. Audio is de meest
gebruikte modaliteit zoals gevonden in het literatuuronderzoek en zeer gemakkelijk
vast te leggen met microfoons. De meeste eerdere studies richtten zich op “hoe”
groepsleden spreken en niet op “wat” ze spreken. De focus lag dus op de sociale
ruimte (bestaande uit non-verbale audio-indicatoren zoals totale spreektijd, veran-
dering in toonhoogte) en niet op de epistemische ruimte (bestaande uit de inhoud
van de gesprekken) van de audiomodaliteit. Zeer weinig werken richtten zich op
de epistemische ruimte semi-automatisch in een lab setting met behulp van hand-
matige codering. Deze benaderingen waren gebaseerd op vooraf gedefinieerde
voorwaarden, gaven een abstract overzicht van de discussieonderwerpen en waren
arbeidsintensief om te implementeren. Daarom hebben we een prototype ontwikkeld
om dit te ondervangen en de rijkdom van de epistemische ruimte te analyseren in
een authentieke, reële wereldsetting met behulp van veldproeven. Hiervoor namen
we de audiogesprekken op tijdens een CC-taak waarbij universiteitsmedewerkers
een bordspel speelden met vooraf toegewezen rollen om bewustzijn te creëren over
de verbinding tussen learning analytics en learning design. We transcribeerden
deze audio-opnames (d.w.z. zetten ze om van spraak naar tekst), verwerkten ze en
visualiseerden ze vervolgens (met behulp van netwerkgrafieken om de onderlinge
verbondenheid van de gesproken tekst te begrijpen). Hiervoor hebben we ook een
rol-gebaseerde profilering gedaan om een holistisch overzicht van de gesprekken te
krijgen op een automatische manier. We hebben dit prototype getest gedurende één
CC sessie met als doel een stap te zetten in de richting van automatische analyse van
de samenwerking.

Onze bevindingen geven aan dat de inhoud van de gesprekken rijke informatie
kan opleveren over de CC-kwaliteit. Met behulp van interactieve netwerkgrafieken
kunnen rijke inzichten worden verkregen over de onderling verbonden gesprek-
spatronen tussen groepsleden. Het ontwerpen en prototypen van een CC-analyse-
opstelling is echter moeilijk om volledig te automatiseren. We hebben hulp van
mensen nodig om het gegevenscorpus op te schonen, vooral wanneer de naam in de
gesprekken wordt uitgesproken.

Aan de hand van het ontwikkelde prototype hebben we de kwaliteit van de samen-
werking gekwantificeerd in Deel III, Hoofdstuk 4, met behulp van veldproeven in
14 verschillende CC-sessies die in een universitaire setting met behulp van bordspel-
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len werden gespeeld. We hebben een holistische analyse gemaakt van de sociale
ruimte (d.w.z. de totale spreektijd en het nemen van beurten) en de epistemische
ruimte (d.w.z. de inhoud van de gesprekken), waarbij we ook rekening hebben
gehouden met de rolgebaseerde bijdragen en interacties, en hebben deze vervolgens
gevisualiseerd. We definiëren de kwaliteit van de samenwerking rekening houdend
met de convergentie van de discussie (i.e., gedeelde epistemische ruimte kennis
zoals geanalyseerd uit de inhoud van de gesprekken) tussen de groepsleden met
verschillende rollen. Ten slotte hebben we zowel de sociale als de epistemische
ruimte gevisualiseerd met behulp van een dashboard; vervolgens bespreken we de
stakeholders die zo’n dashboard kunnen gebruiken en welk toekomstig onderzoek
kan worden gedaan op dat dashboard.

We vinden dat de meeste focus op CC-analyse nu op de sociale ruimte ligt en dat
deze moet verschuiven naar de epistemische ruimte. Maatregelen voor CC-kwaliteit,
zoals convergentie (d.w.z. een toename van gedeelde kennis tussen groepsleden)
gemeten vanuit de epistemische ruimte, kunnen nuttig zijn om de CC-kwaliteit te
kwantificeren. Zowel de sociale als de epistemische ruimte kan nuttig zijn om een
holistisch beeld te geven van de CC-kwaliteit wanneer deze wordt gevisualiseerd op
een enkel dashboard.

In de Discussie worden op basis van de bovenstaande bevindingen een aantal ob-
servaties en aanbevelingen geformuleerd en verder uitgewerkt. We hebben deze
gegroepeerd naar de fase van het onderzoek naar CSCL en CC analytics: het defin-
iëren van de CC kwaliteit en analytics in de vroege fase, het prototypen van de
automatische CC analytics set up in de mid fase en het visualiseren van de CC
analytics om naar de kwantificering van CC kwaliteit te gaan in de late fase.
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सहयोग 21वीं सदी के 4 महत्वपूणर् कौशलाें में से एक है (िकवंुजा, 2015)। कब दो या दो से अिधक लोग एक
समान लक्ष्य की िदशा में कायर् करते हैं तो सहयोग घिटत होने को कहा जाता है (िडलनबगर्, 1999)। सहयोग
या तो ऑनलाइन सेिंट͆ग में हो सकता है या एक सह-िस्थत (या आमने-सामने) सेिंट͆ग में । ऑनलाइन सहयोग का
मापन िशक्षाथर्ी के माप, संग्रह और िवशे्लषण के कारण प्रिक्रयाएं संभव हैं लर्िंन͆ग एनािलिटक्स का उपयोग कर डेटा
(सीमेंस, 2011; ग्रीलर और डे्रक्स्लर, 2012)। साथ हाल ही में सेंसर का सवर्व्यापी उपयोग, अन्यथा सीखने की
िवशे्लिषकी की एक नई शाखा मल्टीमॉडल लर्िंन͆ग एनािलिटक्स (एमएमएलए) के रूप में जाना जाता है, प्रमुखता
से बढ़ गया है (डी िमित्र) एट अल।, 2018ए; मार्िट͆नेज-मालडोनाडो एट अल।, 2017ए)। इसके अलावा, सेंसर
तकनीक है िपछले एक दशक में अिधक स्केलेबल (रेली एट अल।, 2018), सस्ती और िवश्वसनीय बनें (स्टार एट
अल।, 2018)। वृिद्ध के कारण सीसी के िवशे्लषण पर ध्यान कें िद्रत िकया गया है एमएमएलए की। िकया गया है।
इस थीिसस में हमने सह-िस्थत (या आमने-सामने) सहयोग पर ध्यान कें िद्रत िकया। सह-िस्थत सहयोग समूह के
सदस्याें के भौितक, सामािजक और ज्ञान-मीमांसा स्थान के प्रितचे्छदन में होता है। िविभन्न स्थानाें (यानी, महामारी
और सामािजक स्थानाें ) में सहयोग के िविभन्न संकेतकाें का उपयोग करके सहयोग गुणवत्ता का पता लगाया जा
सकता है (प्रहराज एट अल।, 2018बी)। सामािजक स्थान में गैर-मौिखक संकेतक (मुद्रा, हावभाव, नज़र और
गैर-मौिखक ऑिडयो संकेतक जैसे बोलने का समय, िपच, टनर्-टेिंक͆ग) शािमल हैं। एिपस्टेिमक स्पेस में मौिखक
ऑिडयो संकेतक (जैसे बातचीत की सामग्री) और सामग्री लॉग डेटा शािमल हैं।
इस थीिसस के मुख्य उदे्दश्य हैं : 1) सह-िस्थत सहयोग (सीसी) गुणवत्ता और िवशे्लषण को पिरभािषत करना और
समझना; 2) एक तकनीकी प्रोटोटाइप िवकिसत करना और उपरोक्त पिरभाषाआें का उपयोग करके स्वचािलत
सहयोग िवशे्लषण की ओर बढ़ने के िलए फील्ड परीक्षणाें के साथ इसका परीक्षण करना; 3) सीसी एनािलिटक्स
की कल्पना करना और सीसी गुणवत्ता को मापने की िदशा में आगे बढ़ना।
इन उदे्दश्याें की पूर्ित͆ के िलए हमने थीिसस को तीन भागाें और चार अध्यायाें में िवभािजत िकया है। 2 अध्यायाें
(अथार्त, अध्याय 1 और 2) से िमलकर, हम सीसी गुणवत्ता की पिरभाषा का वणर्न करते हैं , और सहयोग के कुछ
पिरदृश्याें में गुणवत्ता को कैसे संदर्िभ͆त िकया जाता है। हम सहयोग में िशक्षार्िथ͆याें का समथर्न करने के िलए गुणवत्ता
को उपयुक्त िवशे्लषण और प्रितिक्रया तंत्र से भी जोड़ते हैं। अध्याय 1 में , हम यह समझने के िलए एक खोजपूणर्
अत्याधुिनक समीक्षा करते हैं िक कैसे संकेतक सहयोग की गुणवत्ता का पता लगाने में मदद करते हैं। िफर हमने
सीसी फीडबैक और एनािलिटक्स पर अध्ययनाें पर ध्यान िदया िक कैसे इन संकेतकाें ने सहयोग को सुिवधाजनक
बनाने में मदद की। उदाहरण के िलए, सहयोगात्मक बैठक के दौरान, सहयोग का समथर्न करने के िलए रीयल-टाइम
फ़ीडबैक देने के िलए सहयोग गुणवत्ता के संकेतक के रूप में कुल बोलने के समय का उपयोग िकया गया था। एक
स्माटर् टेबल पर उस समूह के सदस्य के सामने आवश्यक संख्या में एलईडी रोशनी (यानी, कुल बोलने के समय
के आनुपाितक) को चमकते हुए वास्तिवक समय परावतर्क प्रितिक्रया िदखाई गई थी। इससे उन प्रितभािगयाें के
बीच संतुलन बनाने में मदद िमली िजन्हाें ने अिधक मौिखक रूप से व्यक्त िकया (यानी, जो अिधक बोलते थे) और
िजन्हाें ने कम मौिखक रूप से व्यक्त िकया (यानी, जो कम बोलते थे); िजससे सहयोग की गुणवत्ता में सुधार हो।
इसिलए, इन संकेतकाें की समीक्षा के आधार पर, कई अध्ययनाें से फीडबैक उदाहरण, हमने एक छोटे से फील्ड
अध्ययन की सहायता से रीयल-टाइम फीडबैक का परीक्षण करने के िलए एक हाइिब्रड सेट अप (मानव पयर्वेक्षकाें
और माइक्रोफ़ोन जैसे सेंसर के संयोजन के साथ) तैयार िकया। हमने पीएचडी मीिंट͆ग्स के दौरान इस सेट अप का
परीक्षण िकया और सहयोग गुणवत्ता के दो संकेतकाें (यानी, कुल बोलने का समय और टनर् टेिंक͆ग) को टै्रक िकया।
िफर हमने इन संकेतकाें को अस्थायी रेखांकन के रूप में एक बड़े सावर्जिनक साझा प्रदशर्न पर बैठक के दौरान
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एक िंच͆तनशील प्रितिक्रया के रूप में िदखाया। इस फीडबैक सेट अप का उदे्दश्य सहयोग गुणवत्ता पर फीडबैक की
प्रभावकािरता का परीक्षण करने के बजाय इसका अनुभव प्राप्त करना था।
हमारे िनष्कषर् बताते हैं िक सीसी गुणवत्ता के संकेतकाें को दो शे्रिणयाें (अथार्त, सामािजक और ज्ञान-मीमांसा) में
बांटा जा सकता है। ज्ञान-मीमांसा संकेतकाें के समूह का अकेले विरष्ठाें द्वारा पता नहीं लगाया जा सकता है और
उनका िवशे्लषण नहीं िकया जा सकता है और उन्हें समझने की इन मानिसक प्रकृित के कारण मनुष्याें की सहायता
की आवश्यकता होती है। इसके अलावा, सीसी एनािलिटक्स और फीडबैक िडजाइन िहतधारकाें पर िनभर्र है और
लूप में मानव होने से िडजाइन को गित देने में मदद िमलती है।
इसे और समझने के िलए, हम अध्याय 2 में सहयोग गुणवत्ता के संकेतकाें की गहन सािहत्य समीक्षा करते हैं।
ऐसा इसिलए है क्याें िक सहयोग के संकेतक पिरदृश्याें और सहयोग के संदभर् के आधार पर िभन्न होते हैं। यहां, हम
संकेतकाें और अनुक्रिमताें से बने एक घटना-प्रिक्रया ढांचे के साथ सहयोग की गुणवत्ता को पिरभािषत करते हैं।
संकेतक सेंसर से प्रसंस्करण और एकत्रीकरण के बाद प्राप्त िनम्न-स्तरीय घटनाएं हैं। इंडेक्स (यानी, उच्च स्तरीय
प्रिक्रयाएं) सहयोग की गुणवत्ता का पता लगाने में मदद करने वाले िवषय-मापने योग्य माकर् र के रूप में कायर् करते
हैं। एक या एक से अिधक संकेतकाें से बने होते हैं। उदाहरण के िलए, सहयोगी बैठकाें (यानी, सीसी का पिरदृश्य)
में , कुल बोलने के समय (यानी, संकेतक) की समानता (यानी, सूचकांक) सहयोग की गुणवत्ता को मापती है। यिद
समूह के सभी सदस्याें का कुल बोलने का समय समान है और कोई भी बातचीत पर हावी नहीं है, तो समूह के िलए
बोलने के कुल समय की उच्च समानता और सहयोग की बेहतर गुणवत्ता है। ये संकेतक अलग-अलग पिरदृश्याें में
अलग-अलग लक्ष्याें और मापदंडाें के कारण िभन्न होते हैं (यानी, प्राथिमक पहलू जैसे िक सीसी की टीम संरचना,
टीम के सदस्याें का व्यवहार और सहयोग के दौरान व्यवहार)। उदाहरण के िलए, सहयोगी प्रोग्रािंम͆ग के िलए सीसी
गुणवत्ता के संकेतक सहयोगी िवचार-मंथन के संकेतकाें से पूरी तरह िभन्न हो सकते हैं।
इस प्रकार, इस सािहत्य समीक्षा की सहायता से, हम एक वैचािरक मॉडल को पिरभािषत करते हैं िजसमें सीसी
गुणवत्ता का पता लगाने के िलए संकेतक, अनुक्रमिणका और पैरामीटर शािमल हैं। इस मॉडल में , हम संकेतकाें
पर िविभन्न पिरदृश्याें में मापदंडाें को मैप करते हैं और सीसी गुणवत्ता का पता लगाने और भिवष्यवाणी प्रणाली के
िडजाइन का मागर् प्रशस्त करने के िलए अनुक्रिमत करते हैं। हमारे िनष्कषर् यह भी संकेत करते हैं िक सीसी गुणवत्ता
का संचालन कोिंड͆ग जिटलता और अपारदशर्ी मशीन लर्िंन͆ग एल्गोिरदम के उपयोग से ग्रस्त है। सीसी गुणवत्ता के
सैद्धांितक सूचकांक (अथार्त, मापन योग्य माकर् र) और व्यावहािरक रूप से खोजे गए सूचकांकाें के बीच एक बड़ा
अंतर है। इसे पाटने की जरूरत है।
सीसी गुणवत्ता की इस पिरभाषा का उपयोग करते हुए, हम भाग 2, अध्याय 3 में सहयोग के ऑिडयो-आधािरत
संकेतकाें पर ध्यान कें िद्रत करते हैं। ऑिडयो प्रमुख रूप से उपयोग िकया जाने वाला साधन है जैसा िक सािहत्य
समीक्षा में पाया गया है और माइक्रोफ़ोन के साथ कैप्चर करना बहुत आसान है। अिधकांश पूवर् अध्ययन "कैसे"
समूह के सदस्य बोलते हैं , न िक "क्या" बोलते हैं। इस प्रकार, ध्यान सामािजक स्थान (गैर-मौिखक ऑिडयो
संकेतक जैसे कुल बोलने का समय, िपच में पिरवतर्न) पर कें िद्रत था, न िक ऑिडयो मोडेिलटी के महामारी स्थान
(बातचीत की सामग्री को िमलाकर) पर। मैनुअल कोिंड͆ग का उपयोग करते हुए प्रयोगशाला सेिंट͆ग में अधर्-स्वचािलत
रूप से महामारी अंतिरक्ष पर कें िद्रत बहुत कम कायर्। ये दृिष्टकोण पूवर्िनधार्िरत िस्थितयाें पर आधािरत थे, चचार् के
िवषयाें का सार अवलोकन और कायार्न्वयन के िलए श्रमसाध्य थे। इसिलए, हमने इस पर काबू पाने के िलए एक
प्रोटोटाइप िवकिसत िकया और फील्ड परीक्षणाें की मदद से एक प्रामािणक वास्तिवक दुिनया सेिंट͆ग में महामारी
अंतिरक्ष की समृिद्ध का िवशे्लषण िकया। इसके िलए, हमने एक सीसी कायर् के दौरान ऑिडयो वातार्लापाें को िरकॉडर्
िकया, जहां िवश्विवद्यालय के कमर्चािरयाें ने सीखने के िवशे्लषण और सीखने के िडजाइन के बीच संबंध के बारे में
जागरूकता पैदा करने के िलए पूवर्-िनधार्िरत भूिमकाआें के साथ एक बोडर् गेम खेला। हमने इन ऑिडयो िरकॉर्िंड͆ग्स
को ट्रांसक्राइब िकया (यानी, भाषण से टेक्स्ट में कनवटर् करें ), उन्हें प्रोसेस िकया और िफर उन्हें िवज़ुअलाइज़ िकया
(बोलने वाले टेक्स्ट की इंटरकनेक्टेड प्रकृित को समझने के िलए नेटवकर् ग्राफ़ का उपयोग करके)। इसके िलए,
हमने स्वचािलत तरीके से बातचीत का समग्र अवलोकन प्राप्त करने के िलए एक भूिमका-आधािरत प्रोफाइिंल͆ग
भी की। हमने स्वचािलत सहयोग िवशे्लषण की िदशा में एक कदम बढ़ाने के उदे्दश्य से एक सीसी सत्र के िलए इस
प्रोटोटाइप का परीक्षण िकया। िकया।
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हमारे िनष्कषर् बताते हैं िक बातचीत की सामग्री सीसी गुणवत्ता के बारे में समृद्ध जानकारी प्रदान कर सकती है।
इंटरएिक्टव नेटवकर् ग्राफ़ की मदद से, समूह के सदस्याें के बीच परस्पर बातचीत पैटनर् के बारे में समृद्ध अंतदृर्िष्ट प्राप्त
की जा सकती है। हालांिक, सीसी एनािलिटक्स सेट अप को िडजाइन और प्रोटोटाइप करना पूणर् स्वचालन के िलए
मुिश्कल है। हमें डेटा कॉपर्स को साफ करने के िलए मनुष्याें की मदद की ज़रूरत है, खासकर जब बातचीत में नाम
का उच्चारण िकया जाता है।
िवकिसत प्रोटोटाइप का उपयोग करते हुए, हम बोडर् गेम का उपयोग करके िवश्विवद्यालय की सेिंट͆ग में खेले गए 14
अलग-अलग सीसी सत्राें में फील्ड ट्रायल की मदद से भाग 3, अध्याय 4 में सहयोग की गुणवत्ता को मापने की
िदशा में आगे बढ़े। हमने भूिमका आधािरत योगदानाें और अंतःिक्रयाआें पर िवचार करते हुए सामािजक (यानी, कुल
बोलने का समय और बारी लेने) और एिपस्टेिमक (यानी, बातचीत की सामग्री) स्थान का समग्र िवशे्लषण िकया
और िफर इसकी कल्पना की। हम अलग-अलग भूिमकाआें वाले समूह के सदस्याें के बीच चचार् के अिभसरण (यानी,
साझा महामारी अंतिरक्ष ज्ञान का िवशे्लषण बातचीत की सामग्री से िवशे्लषण) को ध्यान में रखते हुए सहयोग की
गुणवत्ता को पिरभािषत करते हैं। अंत में , हमने एडशबोडर् का उपयोग करके सामािजक और ज्ञान-मीमांसा दोनाें
स्थान की कल्पना की; िफर उन िहतधारकाें पर चचार् करें जो इस तरह के डैशबोडर् का उपयोग कर सकते हैं और उस
डैशबोडर् पर भिवष्य में क्या शोध िकया जा सकता है |
हम पाते हैं िक सीसी िवशे्लषण पर अिधकांश ध्यान अब सामािजक स्थान पर है और इसे ज्ञान-मीमांसा स्थान पर
स्थानांतिरत करने की आवश्यकता है। सीसी गुणवत्ता के उपाय जैसे िक अिभसरण (यानी, समूह के सदस्याें के
बीच साझा ज्ञान में वृिद्ध) को एिपस्टेिमक स्पेस से मापा जाता है, सीसी गुणवत्ता को मापने के िलए उपयोगी हो
सकता है। सीसी गुणवत्ता का एक समग्र दृिष्टकोण देने के िलए सामािजक और ज्ञान-मीमांसा दोनाें स्थान उपयोगी
हो सकते हैं जब एक िंस͆गल डैशबोडर् पर कल्पना की जाती है।
चचार् में , ऊपर सूचीबद्ध िनष्कषार्ें के आधार पर, हम िटप्पिणयाें और िसफािरशाें के िमश्रण को प्राप्त करते हैं और
िवस्तृत करते हैं। हमने इन्हें सीएससीएल और सीसी एनािलिटक्स पर शोध के चरण के अनुसार समूहीकृत िकया:
प्रारंिभक चरण में सीसी गुणवत्ता और िवशे्लषण को पिरभािषत करना, मध्य चरण में स्थािपत स्वचािलत सीसी
एनािलिटक्स का प्रोटोटाइप बनाना और सीसी एनािलिटक्स की कल्पना करना तािक सीसी गुणवत्ता की मात्रा का
ठहराव हो सके।
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Summary in Odia 
 
ଏକବିଂଶ ଶତା�ୀର 4 ଟି ଗରୁୁ�ପ�ୂ� େକୗଶଳ ମ�ରୁ ସହେଯାଗ େହଉଛି (Kivunja, 2015) େଗାଟିଏ | ଏକ 
ଅନଲାଇନ୍ େସଟିଂେର କି�ା ଏକ ସହ-ଅବ�ାନ (କି�ା ମହୁ ଁାମହିୁ)ଁ େସଟିଂେର ସହେଯାଗ େହାଇପାେର | ଏହି 
ବିଷୟବ�ୁେର ଆେମ ସହ-ଅବ�ାନ (କି�ା ମହୁ ଁାମହିୁ)ଁ ସହେଯାଗ ଉପେର �ାନ େଦଇଥ�ଲୁ | ସମବାୟ ସମିତି 
େଗା� �ୀ ସଦସ�� ଶାରୀରିକ, ସାମାଜିକ ଏବଂ �ାନ �ାନର ଛକଠାେର େହାଇଥାଏ | ବିଭି� ସଚୂକ 
ବ�ବହାର କରି ସହେଯାଗ ଗଣୁବ�ା ଚି�ଟ କରାଯାଇପାେର | ବିଭି� େ�ସେର ସହେଯାଗ (ଯଥା, �ାନ 
ଏବଂ ସାମାଜିକ େ�ସ)୍ (Praharaj et al., 2018b) େହଇପାେର | ସାମାଜିକ ଜାଗାେର ଅଣଭବ�ାଲ୍ ସଚୂକ 
(�ିତି, ଅ�ଭ�ୀ, ଆଖ� ନଜର ଏବଂ କଥା ନେହବା ସମୟ, ପିଚ୍, ଟନ� େନବା) ଭଳି ଅଣଭବ�ାଲ୍ ଅଡିଓ ସଚୂକ 
ଥାଏ | �ାନ େ�ସ ୍ଭବ�ାଲ୍ ଅଡିଓ ସଚୂକ (େଯପରିକି ବା��ାଳାପର ବିଷୟବ�ୁ) ଏବଂ ବିଷୟବ�ୁ ଲଗ ୍ତଥ�କ ୁ
େନଇ ଗଠିତ | 
ଏହି ବିଷୟବ�ୁର ମଳୂ ଉେ�ଶ�ଗଡ଼ୁିକ େହଉଛି: 1) ସହ-ଅବ�ାନ ସହେଯାଗ (CC) ଗଣୁ ଏବଂ 
ଆନାଲିଟି�କ ୁ ବ�ାଖ�ା ଏବଂ ବୁଝିବା; 2) ଏକ ଯା�ିକ େ�ାେଟାଟାଇପ ୍ ବିକଶତି କରିବା ଏବଂ ଏହାକ ୁ
ଉପେରା� ସଂ�ା ବ�ବହାର କରି �ୟଂଚାଳିତ ସହେଯାଗ ଆନାଲିଟି� ଆଡକ ୁଯିବା ପାଇ ଁେ�� ପରୀ�ଣ 
ସହିତ ଏହାକ ୁପରୀ�ା କରିବା | 3) CC ଆନାଲିଟି�କ ୁଭିଜୁଆଲ୍ କରିବା ଏବଂ CC ଗଣୁବ�ା ମାପିବା ଆଡକ ୁ
ଯିବା | 
ଆେମ ପାଇଲୁ େଯ CC ଆନାଲିଟି� ଉପେର ଅଧ�କାଂଶ �ାନ ବ��ମାନ ସାମାଜିକ �ାନ ଉପେର ଅଛି ଏବଂ 
ଏହା �ାନ �ାନକ ୁ �ାନା�ରିତ େହବା ଆବଶ�କ | CC ଗଣୁବ�ା ପରିମାପ (ଯଥା, େଗା� �ୀ ସଦସ�� 
ମ�େର ଅଂଶୀଦାରିତ �ାନେର ବୃ�ି) CC ଗଣୁବ�ା ପରିମାଣ ପାଇ ଁଉପେଯାଗୀ େହାଇପାେର | ଉଭୟ 
ସାମାଜିକ ଏବଂ �ାନ େ�ସ କୁ ଉପେଯାଗ କରି CC ଗଣୁର ଏକ ସାମ�ିକ ଦୃଶ� େଦବା ପାଇ ଁଉପେଯାଗୀ | 
ଆେଲାଚନାେର, ଉପେରା� ତାଲିକାଭୁ� ଫଳାଫଳ ଉପେର ଆଧାର କରି, ଆେମ ପଯ��େବ�ଣ ଏବଂ 
ସପୁାରିଶର ମି�ଣ ଉପେର ବ��ନା କରୁ | CSCL ଏବଂ CC ଆନାଲିଟି� ଉପେର ଅନୁସ�ାନର ପଯ��ାୟ 
ଅନୁଯାୟୀ ଆେମ ଏହାକ ୁେଗା� �ୀ କରିଛୁ: �ାର�ିକ ପଯ��ାୟେର CC ଗଣୁବ�ା ଏବଂ ଆନାଲିଟି�କ ୁବ�ାଖ�ା 
କରିବା, ମ�ଭାଗେର �ାପିତ �ୟଂଚାଳିତ CC ଆନାଲିଟି�କ ୁ େ�ାେଟାଟାଇପ ୍ କରିବା ଏବଂ ବିଳ�ିତ 
ପଯ��ାୟେର CC ଗଣୁବ�ା ପରିମାଣକ ୁମାପିବା  ପାଇ ଁCC ଆନାଲିଟି�କ ୁଭିଜୁଆଲ୍ କରିବା | 
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